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Abstract—The rapid growth of the Internet of Things (IoT)
has led to the widespread adoption of IoT networks in numerous
digital applications. To counter physical threats in these systems,
automatic modulation classification (AMC) has emerged as an
effective approach for identifying the modulation format of
signals in noisy environments. However, identifying those threats
can be particularly challenging due to the scarcity of labeled
data, which is a common issue in various IoT applications such
as anomaly detection for unmanned aerial vehicles (UAVs) and
intrusion detection in IoT networks. Few-shot learning (FSL)
offers a promising solution by enabling models to grasp the
concepts of new classes using only a limited number of la-
beled samples. However, prevalent FSL techniques are primarily
tailored for tasks in the computer vision domain and are not
suitable for the wireless signal domain. Instead of designing
a new FSL model, this work suggests a novel approach that
enhances wireless signals to be more efficiently processed by
the existing state-of-the-art (SOTA) FSL models. We present
the Semantic-Consistent Signal Pre-transformation (ScSP), a
parameterized transformation architecture that ensures signals
with identical semantics exhibit similar representations. ScSP is
designed to integrate seamlessly with various SOTA FSL models
for signal modulation recognition and supports commonly used
deep learning backbones. Our evaluation indicates that ScSP
boosts the performance of numerous state-of-the-art FSL models,
all the while preserving flexibility.
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Learning, Signal Processing
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Fig. 1. An example of an inferior decision boundary in an abnormal unmanned
aerial vehicle (UAV) detection application when insufficient abnormal radio
signals are provided. The inferior decision boundary (in red color) often leads
to poor generalization ability for other abnormal UAVs that are presented in
training samples. (Best viewed in color.)

I. INTRODUCTION

THE BURGEONING field of the Internet of Things (IoT)
has garnered immense interest due to its promise of ex-

tending internet connectivity to everyday physical objects [1]–
[6]. This technology has led to the deployment of a plethora
of interconnected devices, permeating both our personal lives
and industrial processes. Due to the open nature inherent in
IoT devices, these interconnected devices frequently function
in environments lacking trust, thereby leaving them vulnerable
to numerous active, malicious attacks. Automatic modulation
classification (AMC) [7] is the conventional approach to iden-
tifying physical-layer threats like anomalous UAV jamming
[8] and pilot jamming [9] by determining the modulation type
and calculating the related modulation parameters for noise-
affected signals within a complex radio environment [10].

Recently, deep learning-based AMC [11]–[13] approaches
have achieved decent performance on various applications by
learning representations from large-scale labeled datasets. Un-
fortunately, the situation of few samples or insufficient samples
is common in many IoT applications, including but not limited
to intrusion detection, anomaly detection, and fault diagnosis.
For example, in the city surveillance applications, a model
needs to a quick adaptation to detect new or unknown drone
models in sensitive areas with limited data. However, the few-
shot case present unique challenge as illustrated in Figure 1,
the anomaly detection model trained with insufficient signals
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(a) RelatNet (b) RelatNet/ScSP (c) ProtoNet (d) ProtoNet/ScSP (e) MatchNet (f) MatchNet/ScSP
Fig. 2. The latent space visualization of the Radio Signal feature embedding space for test samples in the Signal-128 dataset, as reported [16], [17], [18].
The ’/ScSP’ represents the combination with the proposed Semantic-Consistent Signal Pre-transformation (ScSP) framework. (Best viewed in color.)

may generate an inferior decision boundary (in red), overfitting
to the existing observed abnormal samples. However, the dis-
tribution of real abnormal samples (in gray) is often larger than
the observed abnormal samples, making the learned detection
model less effective in detecting new abnormal signals from
similar UAVs. Alternatively, developing a mechanism that
allows the model to learn a superior decision boundary when
insufficient samples are provided can significantly improve the
robustness and generalization of the AMC system.

In order to address the challenge of label scarcity by increas-
ing the quantity and diversity of samples, various augmentation
techniques and meta/metric-based approaches have been pro-
posed, such as AFHN [14], MAML [15], and ProtoNet [16].
These meta/metric-based approaches typically aim to learn
an efficient base model from a large dataset and adapt it
to few-shot classes using distance measurement or gradient
optimization. However, the availability of a substantial base
class in the radio signal processing domain is often limited,
and the direct application of these approaches may lead to
the problem of ‘inadequate generalization.’ Specifically, the
semantic information or signal patterns are not effectively
learned by those methods with limited base samples, rendering
the few-shot adaptation less generalizable. As depicted in Fig.
2, the conventional few-shot learning framework would suffer
from indistinguishable latent problems. The class distribution
often exhibits considerable intra-class variation, and the phe-
nomenon of inter-class pattern overlapping obscures the deci-
sion boundary, thereby compromising the final classification
performance. (see Fig. 2a, 2c, 2e).

Furthermore, the conventional augmentation-based ap-
proach primarily relies on spatial transformations or adversar-
ial generation, ensuring semantic/pattern invariance visually.
However, in the domain of radio signal processing, signal
patterns are often invisible and non-interpretable. The direct
adaptation of spatial augmentation approaches could destroy
the inherent pattern, thus causing performance degradation.
Additionally, in addition to the previously mentioned chal-
lenges, inherent signal properties further complicate conven-
tional few-shot learning. These include: 1) Modulated signals
often experience noise interference during transmission in
open environments, complicating the representation learning
process. 2) Radio signal data exhibits distinctive charac-
teristics such as periodicity and symmetry, which may pose
challenges for deep learning models with limited sample sizes.

To address the aforementioned issues, we introduce a pa-

rameterized radio signal transformation framework, Semantic-
Consistent Signal Pre-transformation (ScSP). The primary
concept behind ScSP involves the extraction of high-density
constants, for instance, semantic information/signal pattern,
while eliminating non-constant elements like additional noises.
This leads to improved intra-class concentration [19] of
constants, enhancing the performance of downstream FSL
methods. To achieve that, we design a framework to en-
courage the model to learn meaningful representations that
capture invariant (i.e., semantic-consistent) features across
augmented versions of the same instance while discriminating
against representations from different instances. Specifically,
we deeply investigate the signal pattern expression form (e.g.,
the constellation of the IQ signals) and propose the info-
preserved augmentation module to generate diverse aug-
mented signals without modifying its original semantic infor-
mation (i.e., modulation type). Then, to minimize the noise
interference, we present an adaptive noise filtering module
that transforms the parameter of the conventional Gaussian
noise filter into a learnable layer, enabling it to adaptively
capture various patterns of noise. Furthermore, we present an
amplitude-Phase feature enhancement module to improve
fine-grained/semantic feature extraction with Amplitude-Phase
transformation. Finally, the InfoNCE [20] loss is applied
to maximize the mutual information of the augmented ver-
sions of the same instance so to encourage the consistent
pattern extration. Based on our current understanding, ScSP
stands as the pioneering framework that addresses few-shot
automated modulation recognition by enhancing the pattern
expressiveness of signals via expert knowledge-guided pre-
transformation. Comprehensive experiments and analyses have
been conducted, resulting in the following primary insights:

• The current SOTA FSL approaches achieve noteworthy
performance improvements on the task of radio signal
modulation FSL, by incorporating the suggested ScSP
framework.

• We show that the combination of the info-preserved
augmentation and the adaptive noise filtering is more
suitable under high noise conditions, while the entire
ScSP framework works better under low noise conditions.

• We propose a measurement method to comprehensively
study the impact of the noise on radio signal representa-
tion after Amplitude-Phase transformation. The semantic
information represented by the transformed signals posi-
tively correlates with the signal noise level.
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II. RELATED WORK

A. DL-based Automatic Modulation Recognition.

Automatic modulation recognition refers to the modulation
category identification of the received radio signals. This
technology is widely used in spectrum management [21], [22],
interference identification [12], and electronic reconnaissance
systems [11]. There have been many attempts to perform
modulation recognition with Deep Learning-based (DL-based)
methods. Hong et al. [23] proposed a two-layer GRU to cap-
ture the information from context-level (i.e., time dimension)
and feature level. Later, West et al. [24] proposed CLDNN,
which combines the Convolutional Neural Network (CNN)
and Long Short Term Memory (LSTM) to enhance the feature-
level information extraction. To further improve the feature
extraction ability, Zhang et al. [10] utilized a deep resid-
ual network model to conduct the classification task, while
the training process is time-consuming. Nonetheless, neither
of these deep learning-based methods considers signal pre-
processing (e.g., noise filtering) according to its particular
properties. Previous work [25] presents that special properties
like noise often lead to a significant performance drop on DL-
based methods. This issue becomes more critical when suffi-
cient signal samples are unavailable (i.e., few-shot situations).
Moreover, the DL-based frameworks with insufficient samples
often suffer from the overfitting problem, which leads to poor
generalization ability and unsatisfied results.

B. Few-shot Learning

Typically, traditional FSL techniques are categorized into
either inductive or transductive inference, depending on the
inference setting. Inductive inference approaches classify indi-
vidual unlabeled samples, whereas transductive inference ones
classify multiple query samples simultaneously. The inductive
inference strategies can be further subdivided into:1) Metric-
oriented methods (e.g., Matching network [18], Prototypical
Networks [16], RENet [26]). These techniques aspire to es-
tablish a series of projection functions (embedding functions)
and metrics that quantify the similarity among samples. 2)
Meta-oriented methods (e.g., MAML [15], ProtoMAML [27]).
These techniques leverage a model-agnostic meta-learner to
develop an efficient base model across multiple training tasks,
which can be adapted to a new task with a limited number
of training samples via a few gradient steps, resulting in a
model with decent generalization ability. 3) Augmentation-
oriented methods [14], [28]. These methods aim at creating
diverse sample generation strategies for unfamiliar classes to
foster representation learning. Recently, transductive inference
methods (TIM [29], LaplacianShot [30]) have emerged as an
appealing approach to tackling few-shot tasks, which have
better performance than inductive inference.

Although the above-mentioned state-of-the-art FSL methods
have achieved decent results on various vision-based tasks
[31], [32], adapting these methods to process radio signal
data remains challenges. A few works [10], [33] have re-
cently been proposed to perform few-shot recognition on
modulated signals. However, those methods mainly focus on
extracting fine-grained information from signals with specific

network structures. Zhou et al. [34] proposed a GAN-based
signal sample generation method to solve the first challenge.
However, this generation method only maintains the integrity
and consistency of the generated signals, that is, to generate
integral signals with a similar pattern. When sufficient samples
are unavailable (i.e., low quantity), the generated samples tend
to be identical while losing the diversity. In this paper, we
propose an efficient and flexible signal data transformation
framework that allows the SOTA FSL algorithms can be easily
applied to solve the radio signal modulation recognition FSL
problem.

III. PROBLEM FORMULATION

Background Knowledge. In wireless communication systems,
modulation aims to add information to a set of signals by
varying one or more properties of periodic electromagnetic
waves (carriers) which can be transmitted [35]. A transmitted
time modulation signal r(t) can be illustrated as:

r(t) = S(t) ∗ h(t) exp[j2π∆ft+ ψ0] + noise(t) (1)

where ∗ represents the convolution operation, S(t) denotes
the modulated signal, h(t) represents the impulse response
of the wireless channel, ∆f indicates the carrier frequency
offset, ψ0 signifies the initial phase, and noise(t) refers to the
environmental noise.

To facilitate signal information extraction and signal recov-
ery, in-phase signals and the quadrature-phase signal are used
to jointly characterize the relevant modulation information, i.e.
I-Q data [36]. So we define the received discrete complex
signal as xIQ = {xI , xQ}, which is sampled from r(t):

{xI , xQ} = sample{rI(t), rQ(t)}
{rI(t), rQ(t)} = {Re{r(t)}, Im{r(t)}}

(2)

where xI denotes the in-phase signal, xQ represents the
quadrature-phase signal, Re is the real part and Im indicates
the imaginary part. For the automatic modulation classification
task, the modulated signal segment x (i.e., sampled from
xIQ) and its corresponding label y are used for the training
procedure (feature extraction).
Automatic Modulation FSL (AMFSL). The AMFSL oper-
ates in two phases: 1) on the training stage, a model is trained
on a set of base classes, and a new set of novel classes is
defined as support set for novel classes learning. 2) Then, a
query set with identical classes as the support set is presented
for novel classes prediction on the evaluation stage. We define
the base training set as Db = {xb, yb} where xb is the
quadrature modulated signal segment, and the corresponding
label yb ⊂ RCB belongs to a total of CB base classes. The
support set is denoted as Ds = {xs, ys}, ys ⊂ RCK , where
CK is the novel classes, and each class includes N samples.
The remaining Q samples in CK novel classes form the query
set Dq = {xq, yq}, yq ⊂ RCK [18]. It should be noticed that
the novel classes on support set and query set are disjoint with
base training set classes (i.e., CK ∩CB = ∅). As a result, the
objective of the FSL settings could be formulated as follows:

min(ϵerror) = E(xq,yq)∼Dq
[f ′(xq) ̸= yq] (3)
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Fig. 3. The structure of the proposed Semantic-Consistent Signal Pre-transformation (ScSP) framework. The ScSP framework consists of two stages of the
training paradigm. Stage 1: The Base and Support set samples are fed into the noise filtering module for noise removal. Then, the Augmentation module
receives the noise-filtered samples for augmentation (i.e., creating two variations of one sample). Finally, the shared weights encoder is optimized by infoNCE
loss to extract pattern-consistent representations from the augmented samples. Stage 2: The Pre-trained ScSP framework takes the input samples and outputs
the domain-specific signal representation for downstream Few-Shot Learning (FSL) algorithm training.

where ϵerror denotes the target error on query set, and the f ′

represents the trained FSL using base and support set.

IV. MODULATED SIGNAL PRE-TRANSFORMATION

To extract constant semantic content from the signals, our
objective is to optimize the mutual information between two
signal segments, x1 and x2, sharing similar semantics. This
can be expressed as follows:

I(x1, x2) =
∑

x1,x2

p(x1, x2) log(
p(x1, x2)

p(x1) · p(x2)
) (4)

In order to achieve this, the ScSP framework is designed
to minimize the InfoNCE loss (refer to Eq. 18). Figure 3
illustrates the primary elements of the ScSP framework: i)
The Info-preserved Augmentation module augments the input
signals, maintaining the modulation type constant, to assist
in the minimization of the InfoNCE loss; ii) The Adaptive
Noise Filtering module diminishes the impact of non-semantic
information (i.e., inherent Gaussian noise). iii) An Amplitude-
Phase Feature Enhancement module transforms the signal into
Amplitude and Phase for semantic information enhancement.
The last two components are served as the enhancing module
for the InfoNCE loss, which aims to maximize the mutual
information from two augmented signals to get constant se-
mantic information.

[37] articulates that the effectiveness of InfoNCE in the ex-
traction of semantic information can be significantly enhanced
through data augmentation. The enhancements are realized via
two primary avenues: 1) Data augmentation serves to expand
the volume of training data; 2) It also elevates the count of se-
mantically similar data entries, thereby optimizing the mutual
information. However, compare to image-like augmentations,
signals’ intrinsic properties (e.g., modulation type) are often
invisible, making designing proper signal augmentation meth-
ods challenging. Inspired by the constellation diagram [38] in
the signal processing community, where the representation of
the digital modulation scheme is obtained, we draw the axial
projection (i.e., similar to constellation diagram) of different

signals to investigate the special properties. Figure 4 illustrates
the axial projection of signals in three different modulation
types. We find it shares similar properties to the constellation
diagram where the semantic information of signals is obtained.
Therefore, we designed four types of axial projection invariant
augmentation to generate information preserved data samples.

A. Info-preserved Augmentation

Flipping. Our left-right flipping is an asymmetrical ad-
justment of the signal timing relationship, while the fre-
quency (i.e., modulation information) remains unchanged.
Moreover, the left-right flipping will not affect the axial projec-
tion to preserve semantic information. For a given quadrature
modulated signal x in original length L with t-index time step
value x(t) and a flipping augmentation operation gflip(x), the
flipping operation can be formulated as:

gflip(x) : x(t) → x(L− t) ∀t ∈ [0, L] (5)

Interception. The modulation is applied to the whole signal
segment so that the intercepted signals still share the same
semantic information as the original signal. Therefore, the
intercepted signal can be treated as a weaker representation
of the original signal since the axial projection of intercepted
signal is nearly identical (sparse) to the original signals. For
a segment of a quadrature modulated signal, denoted as x,
with an initial length L, the process of interception can be
represented as:

ginter(x, a, L
′) : x→ xa,L′ = [x(a), x(a+ 1), ..., x(a+ L′)]

(6)
where xa,L′ denotes the intercepted signal, and L′ signifies the
set interception length. The beginning point of interception, a,
should be chosen within the range [0, L− L′].

Rotation. To facilitate the illustration of rotation. A quadra-
ture modulated signal/complex signal [39] segment x can
be represented as the in-phase and quadrature-phase parts of
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Fig. 5. The visualization of signal rotation operation

signals, respectively. The relationship between these signals is
given by:

x = xI + j · xQ (7)

where j is a imaginary number, that is, j =
√
−1.

Figure 4 presents that the semantic information of the
modulated signals is rotation invariant, such that character
is used in the signal generation. Hence, we utilize the Euler
formula [40] for rotating the initial signals (Refer to figure 5).
For a signal modulated in quadrature, we can represent the
rotation operation as follows:

grotate(x, θ) = x · eθπj
= (xR + j · xI)(cos(θπ) + j · sin(θπ)) (8)

where grotate(x, θ) signifies the rotation augmentation op-
eration, and θ ∼ U (0, 2π) illustrates the rotation angle
originating from the uniform distribution.

Conjugate transformation. Inspired by the generation of
constellation diagram, we develop conjugate transformation as
follows:

gconjugate(x) = xI − j · xQ where j =
√
−1 (9)

We only change the in-phase part xI of signal and its semantic
information is preserved.

B. Adaptive Noise Filtering

This subsection introduces a parameterized Gaussian-based
noise filter that can filter noise for various radio signals. Previ-
ous study [13] presents that adding a Gaussian noise filtering
module will vastly reduce the negative effect of noise and
improve the final recognition result. The Gaussian filter [41]
can suppress high-frequency information to a certain degree,
thereby generating smoother signals with less high-frequency
noise. However, the conventional Gaussian noise filtering ap-
proach is ineffective in addressing the diverse changes in noise
intensity and signal types when using fixed parameters. Hence,
we transform the parameter of the conventional Gaussian noise
filter into a learnable layer, enabling it to adaptively capture
various patterns of noise. The Gaussian filtering operation
F (x) can be formulated as:

f(x) = x ∗G s.t. G (n) =
1√
2πσ

e−
n2

2σ2 (10)

and G(n) represents the n-indexed variable of the Gaussian
filter kernel. The parameter σ can be fine-tuned through
learning to accommodate varying signal types. Further, the
ideal filter f∗θ (x) should display equivariance [37] to the aug-
mentations g(x), which implies that the order of augmentation
and filtering can be interchanged without altering the outcome:

g(f∗θ (x)) = f∗θ (g(x)) (11)

Consequently, adopting this presumption, we employ the pa-
rameterized filter fθ to mimic the optimal filter by reducing
the constraint loss:

LG = ∥g(fθ(x))− fθ(g(x))∥22 (12)

C. Amplitude-Phase Feature Enhancement

Rajendran et al. [42] observed that converting modulated
signals to Amplitude-Phase format would benefit the repre-
sentation learning of DL models. Furthermore, for modula-
tion types like Amplitude-shift keying (ASK) and Phase-shift
keying (PSK), the modulated signal S(t) uses the changes in
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amplitude and phase to carry the information of the binary bit
stream sb(t), that is:

ASK : S(t) = Acsb(t)exp[j2πfct],

PSK : S(t) = Acexp[j2πfct+ j2π(∆psb(t) + ψ0)]
(13)

where Ac denotes the carriers amplitude, fc represents the
carrier wave and ∆p is the phase modulation factor. From Eq.
(13), we can observe that the instantaneous amplitude A(t) and
instantaneous phase ψ(t) of the carriers are linearly dependent
with sb(t), which can be represented by:

A(t) = Acsb(t) ∝ sb(t)

ψ(t) = ∆psb(t) + ψ0 ∝ ∆psb(t)
(14)

Eq. (13)(14) demonstrate that the variation of A(t) and ψ(t)
carries the main information of the modulated signal. In this
case, we present the Amplitude-Phase feature enhancement
module to transform signals into amplitude and phase, allow-
ing the downstream deep learning model to learn their features
better. The discrete amplitude Ar and discrete phase ψr modal
of the signal at the receiver side can be extracted by following
operations:

Ar =
√
x2I + x2Q

ψr = arctan(xQ/(xI + ϵ))
(15)

where ϵ denotes the microconstants. More specifically, Fig-
ure 6 illustrates the procedure of the transformation on the
axial projection of signals. The point on the axial projection
is represented by abscissa, and the ordinate is converted to
radial length and angle.

Finally, we leverage the concatenation operation to extract
information from discrete amplitude and discrete phase simul-
taneously, which can be represented as:

E(x) = concat{Ar, ψr} (16)

where E(x) represents the enhancement operation. concat
denotes the concatenation operation.

The transformed signal has a simpler representation than
it is presented as abscissa and ordinate. With the simpler
representation, the information of the axial projection is easier
captured by the feature extractor.

D. InfoNCE loss-based ScSP pre-training

The pre-training of the ScSP is formulated as a unsu-
pervised learning procedure. Mini-batch signal segments are

first sampled from the base and support set to perform info-
preserved augmentation. Then, the augmented signal segments
will be processed by adaptive noise filtering and amplitude-
phase feature enhancement modules to remove the carried
noise and enhance the signal representation. Lastly, a shared
weight parametric model (e.g., CNN) is employed to trans-
form the signals into advanced representations for training.
It’s noteworthy that all components in the ScSP framework
undergo concurrent training, optimized by the constraint loss
LG and InfoNCE loss LC . This can be formulated as follows:

L = LC + LG (17)

Specifically, the InfoNCE loss could be formulated as:

LC = −Exi
1,x

i
2∼p(x1,x2){log

h(xi
1,x

i
2)∑N

j̸=i h(x
i
1,x

j
2)}

}
h(x1, x2) = exp{sim[gθ(x1), gθ(x2)]/α}

(18)

we define the ScSP framework as gθ, and the temperature
parameter is represented by α. We measure the similarity
between u and v using the cosine similarity, which is defined
as sim(u, v) = uTv/ ∥u∥ ∥v∥, serving as the dot product
of l2 normalized u and v. Augmented samples drawn from
an identical signal, xi1, x

i
2, are deemed as positives, while

augmented samples from different signals, denoted as xi1, x
j
2,

are considered negatives. After the pre-training, the trained
ScSP framework will extract the representation of all signal
segments from the base, support and query set for further few
shot learning usage.

V. EXPERIMENT

A. Datasets

Our proposed ScSP framework is assessed across three
benchmark datasets: signal-128 [7], signal-512, and signal-
1024 [46]. The numbers in the dataset names correspond to
the lengths of the respective signals (e.g., signal-128 represents
the signals with 128 lengths).

Signal-128 represents a comprehensive public radio dataset,
comprising eight digital variations (BPSK, QPSK, 8PSK,
16QAM, 64QAM, BFSK, CPFSK, PAM4) and three ana-
log ones (WB-FM, AM-SSB, and AM-DSB). Each mod-
ulation type is associated with 20 distinct Signal-to-Noise
Ratios (SNRs), each accompanied by 1000 samples. SNR, ex-
pressed as Signal/Noise, is a key measure of signal quality,
where a high SNR value signifies less noise interference in
the signal.

Signal-512 is a private dataset that factors in several
complex aspects of communication systems, such as carrier
phase, pulse shaping, frequency offsets, and noise. The dataset
includes 12 different modulation types, namely, BPSK, QPSK,
8PSK, OQPSK, 2FSK, 4FSK, 8FSK, 16QKAM, 32QAM,
64QAM, 4PAM and 8PAM. The SNR of each modulation
type is uniformly distributed within a range from -20dB to
30dB. Each data sample comprises 64 symbols, oversampled
at a rate of 8, leading to a total of 512 sampling points for
each sample.

Signal-1024 is a publicly available radio signal dataset com-
prising 24 distinct types of both digital and analog modula-
tions. These modulation methods include OOK, 4ASK, 8ASK,
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Method
Signal-128 Signal-512 Signal-1024

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Origin +ScSP Origin +ScSP Origin +ScSP Origin +ScSP Origin +ScSP Origin +ScSP

CNN Backbone
MatchNet(NeurIPS,2016) [18] 59.99% +13.14% 72.77% +9.33% 40.30% +0.24% 41.11% +3.29% 80.57% +7.87% 82.15% +8.81%

MAML(ICML,2017) [15] 30.39% +27.56% 58.37% +5.55% 23.35% +0.15% 24.73% +12.19% 58.37% +15.97% 78.14% +1.63%
ProtoNet(NeurIPS,2017) [16] 59.55% +12.31% 68.83% +13.61% 40.74% -0.13% 40.98% +2.97% 80.76% +4.58% 81.65% +9.03%
RelatNet(CVPR,2018) [17] 48.23% +20.81% 67.05% +14.18% 36.25% +1.61% 39.78% +2.31% 61.91% +18.65% 80.07% +8.12%

Tim-GD(NeurIPS,2020) [29] 62.33% +13.18% 74.14% +8.11% 40.29% +0.06% 42.72% +3.42% 80.94% +5.24% 81.27% +10.71%
Tim-ADM(NeurIPS,2020) [29] 67.46% +10.21% 75.14% +7.63% 40.02% +0.10% 42.73% +3.66% 80.91% +0.96% 81.06% +11.39%

ReNet(ICCV,2021) [26] 52.88% +2.84% 70.04% +7.77% 35.93% +0.28% 40.54% +0.78% 75.46% +4.44% 82.00% +10.59%
CM(TNNLS,2022) [43] 41.58% +22.01% 47.29% +7.43% 23.93% +1.67% 38.63% +8.84% 53.28% +26.16% 34.68% +19.19%

Meta-Proto(TNNLS,2022) [44] 34.27% +7.81% 36.06% +8.5% 41.78% +14.32% 42.32% +14.29% 71.79% +6.09% 77.11% +0.97%
DFR(TNNLS,2024) [45] 64.41% +6.72% 68.27% +7.65% 73.55% +1.35% 75.71% +6.90% 63.53% +4.70% 70.62% +1.45%

ResNet Backbone
MatchNet(NeurIPS,2016) [18] 61.23% +9.46% 74.94% +8.71% 40.49% +0.30% 40.91% +2.46% 79.94% +2.35% 82.76% +7.54%

MAML(ICML,2017) [15] 35.77% +20.88% 59.27% +2.46% 23.01% +3.43% 28.80% +11.99% 59.43% +15.43% 72.64% +3.75%
ProtoNet(NeurIPS,2017) [16] 57.01% +15.17% 70.65% +12.34% 39.98% +0.12% 41.16% +3.86% 80.29% +0.25% 81.40% +8.33%
RelatNet(CVPR,2018) [17] 45.87% +21.52% 65.36% +15.75% 36.03% +0.44% 36.42% +4.32% 49.21% +31.65% 79.98% +7.67%

Tim-GD(NeurIPS,2020) [29] 60.15% +13.54% 73.95% +9.70% 41.38% +0.60% 42.22% +3.57% 80.47% +0.45% 81.60% +9.55%
Tim-ADM(NeurIPS,2020) [29] 62.17% +14.08% 75.97% +7.82% 41.49% +0.40% 41.89% +4.56% 80.28% +0.54% 81.57% +9.94%

ReNet(ICCV,2021) [26] 66.51% +7.72% 72.74% +3.72% 38.22% +0.30% 40.80% +1.16% 78.40% +3.07% 82.09% +8.12%
CM(TNNLS,2022) [43] 32.07% +29.27% 58.96% +12.33% 24.29% +0.65% 38.11% +8.14% 58.22% +21.22% 74.63% +8.52%

Meta-Proto(TNNLS,2022) [44] 33.79% +7.81% 38.02% +4.02% 45.27% +7.65% 48.49% +9.49% 70.21% +8.19% 75.10% +3.64%
DFR(TNNLS,2024) [45] 72.29% +11.31% 76.01% +12.50% 67.69% +2.91% 73.63% +5.76% 63.05% +2.66% 64.38% +5.02%

TABLE I
5-WAY FEW-SHOT CLASSIFICATION ACCURACY ON THREE BENCHMARK DATASETS. ”ORIGIN” SIGNIFIES THE RESULT OF FEW-SHOT LEARNING WITHOUT
APPLYING THE SCSP FRAMEWORK, WHILE ”+SCSP” IMPLIES THE OUTCOME OF FEW-SHOT LEARNING INCORPORATING THE SCSP FRAMEWORK. ‘+’ OR
‘-’ SYMBOL INDICATES A RESPECTIVE INCREASE OR DECREASE IN PERFORMANCE. PEAK PERFORMANCE IS HIGHLIGHTED USING AN UNDERLINE (‘ ’).

BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK,
64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM,
256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-
DSB-SC, FM, GMSK, and OQPSK. The data in Signal-1024
was obtained from environments characterized by high SNR
and low fading, which pose complex signal classification
challenges. The dataset is structured such that each modulation
method is represented across 26 unique SNRs, with 4096
samples provided for each SNR.

B. Experiment setup

Evaluation Models. We carried out the implementation
of the proposed ScSP framework using Pytorch [47] and
performed the training process on a Tesla V100. To evaluate
the performance of our ScSP framework, we employed six
existing FSL models for comparison. These included MAML,
MatchNet, ProtoNet, RelatNet, TIM-GD, TIM-ADM, and
Renet. Previous studies [48], [49] present that decent perfor-
mance of radio signal recognition can be achieved without a
complex network structure. Moreover, the complex network
structure (e.g., ResNet-18) with ample parameters may suffer
from the over-fitting problem when samples are insufficient,
which affects the recognition performance. Therefore, we
followed these studies and replaced the backbone of existing
FSL models with the modified CNN and ResNet.

Experimental setting. Most radio signal datasets have very
limited classes, for example Signal-128 only has eight digital
modulation classes and three analog modulations. The later
may impossible to conduct FSL task, due to the lack of base
classes. Therefore, for all following experiments we select two
classes as the base training set, and the remaining classes form
the support and query set. This setting is more challenge than
that with sufficient base classes. Furthermore, we include the
experimental results in the supplementary material where the
number of base classes is larger than that of query classes.
Following previous studies [50], our experiments are carried
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Fig. 7. Ablation study on single Info-preserved augmentation operation under
5-way-5-shot setting. The dot line indicates the average performance change,
and ‘I’, ‘R’, ‘C’, ‘F’ represents the ‘Interception’, ‘Rotation’, ‘Conjugation’,
and ‘Flipping’ operation respectively.

out in two different setups: 5-way-5-shot and 5-way-1-shot.
In these settings, we deal with five new classes, where each
has only 5 and 1 instances, correspondingly. Each dataset is
explored under four distinct SNRs: -4 dB,0 dB, 10 dB and 18
dB

Training setting. We employ the Adam optimizer [51] with
a learning rate set at 0.001 to train our framework. We limit
the maximum training epoch to 50. Depending on the setup,
the batch size for input varies - we use 70 for the 5-way-5shot
configuration and 42 for the 5-way-1-shot arrangement.
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tion (e.g., I/R means the combination of “Interception” and “Rotation”)

C. Experimental results

Table I presents the efficacy of our ScSP framework in
enhancing the performance of existing SOTA FSL methods in
both 5-way-1-shot and 5-way-5-shot modulation recognition
tasks with varying backbone structures. Notably, our MSP
framework, in combination with RelatNet, yields the highest
performance improvement in six tasks, averaging a growth of
18.33%.

Additionally, we note a marginal performance enhancement
in the 5-way-1-shot task utilizing the signal-512 dataset.
A slight performance decline of approximately 0.13% is
observed for ProtoNet with a CNN backbone. A potential
explanation for this phenomenon could be the significant intra-
class gaps within the signal-512 dataset, making it challenging
to learn the statistical properties of different categories from
a solitary sample. This hypothesis is further substantiated as
the performance gain on the signal-512 dataset improves when
the number of samples is increased (i.e., 5-way-5-shot).

D. Ablation study on augmentation operation

In this subsection, we carefully study the impact of each
operation in augmentation for downstream FSL models. Our
evaluation is performed on the aforementioned three datasets
with -4dB and 18 dB SNR, respectively.

Metrics. The performance change is presented as a percent-
age that is calculated by the FSL+ScSP recognition accuracy
minus FSL recognition accuracy.

Figure 7 shows each operation of ScSP can improve the
performance gain for any downstream FSL models. Addition-
ally, we observed that rotation operation outperforms other
operations, which brings the top improvement in five out
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Fig. 9. Ablation study on 5-way-5-shot task for three datasets. ‘A’, ‘F’, ‘E’
represents the augmentation, noise filtering, and feature enhancement module,
respectively. The dot line indicates the average performance change. The ‘/’
indicates the combination (e.g., A/F means the combination of augmentation
and noise filtering)

of six groups. One possible assumption is that the semantic
information of most signal modulation categories is rotation-
invariant (i.e., mentioned in section IV-A). Thus, the rotation
operation can well preserve signals’ semantic information
while improving its diversity by randomly selecting the ro-
tation angles. As a result, this operation outperforms other
augmentation methods.

Furthermore, we observe that the RelatNet obtains more
significant performance gains than other methods. This may
be caused by the sensitivity of the complex network to
the diversity of training samples. Also, the sample spaces
generated by our proposed augmentation operations do not
overlap. Therefore, we believe that the different augmentation
operations can be stacked to generate more samples. To
verify the effectiveness of augmentation operation stacking in
improving model performance, we test the performance gain
by stacking augmentation operation sequentially.

From Figure 8, we can observe that the performance gain
of the different models is increased with the stacking of
augmentation operations which presents the importance of
sample diversity to representation learning. Moreover, we can
observe that the performance gain in -4dB is relatively lower
than that in 18dB on the signal-512 dataset. We conjecture that
the noise factor in the signal-512 dataset affects augmentation
operations’ abilities.

Takeaway. The aforementioned results present that both
single and stacking augmentation operations can boost the
performance of few-shot recognition under different noise
conditions. Furthermore, the stacking of four augmentation
operations can generate more diverse samples.
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(a) Raw signal data

 

(b) ResNet Pre-training

 

(c) Contrastive Pre-training

 

(d) ScSP Pre-training
Fig. 10. Latent space visualization of the query set classes based on the feature extractor trained on base set classes. a) The raw signal representations; b)
Pre-trained ResNet (Supervised) representation; c) Contrastive Pre-trained (Unsupervised) representation; d) Pre-trained ScSP (Unsupervised) representation.

E. Ablation study on ScSP framework

In order to evaluate the individual and combined efficacy
of components within the ScSP framework, we conduct ex-
periments that isolate each component and its combinations.
Figure 9 shows that 1) single component often (but not always)
contributes positively to the task. For example, under the
high SNR, where the input signals contain less noise, the
improvement of the single noise filtering module is marginal.
Furthermore, the feature enhancement might cause negative
effects, especially under a low SNR (i.e., input signals contain
more noise). One possible conjecture is that the FSL is over-
fitting to the enhanced base set when the sample is insufficient.
2) The combination of ‘A,F’ and ‘A,F,E’ works better under
high noise and low noise conditions, respectively. Specifically,
the enhancement module contributes positively to the FSL
task when signals contain less noise, while it brings negative
impacts in high noise situations. Our conjecture is that the
noise might affect the carried information in signals (e.g., in
amplitude or phase), which makes the feature enchantment
module amplify the negative effects of the noise. We will
describe this effect in the next section.

F. SNR investigation

Following the conjecture from the previous section, that is,
the feature enchantment module amplifies the negative effects
of the noise, we conduct experiments for the combination of
(A/F/E) and (A/E) under four different SNR scenarios(i.e.,
-4dB, 0dB, 10dB, 18dB). From figure 11 (a), we observed
that the accuracy difference between A/F/E and A/E are
gradually decreased, accompanied by the decrease of noises.
This phenomenon presents that when the signal contains
less noise, the feature enhancement module starts to bring a
positive effect. Since the feature enhancement module provides
a transformation to convert signals to a better representation
processed by deep learning models, we assume the semantic
information represented by the transformed signals has a
positive correlation with SNR.

Therefore, we define the effective information rate (EIR) for
a noisy signal x as the normalized mutual information [52]
between a noisy signal x and a corresponding pure signal
x̂ to measure the correlation between them (i.e., NMI =

(a) SNR Investigation (b) Signal-128

(c) Signal-512 (d) Signal-1024
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Fig. 11. The SNR investigation experiments: (a) SNR investigation; (b-d)
Effective information measurement on three datasets. “Diff” indicates the
difference between the accuracy of (A/F/E) and (A/F) combination, while
the “EIR” denotes the effective information rate. The ‘A P’ represents the
Amplitude-Phase.

I(x; x̂)/max{H(x), H(x̂)}), where I denotes the mutual in-
formation and H represents the information entropy. Next,we
use CLUB [53] to estimate I and H ,and the measurement
results are shown in figure 11 (b)(c)(d).

Figure 11 (b)(c)(d) show that EIR has a positive correlation
with SNR. The transformed signals (i.e., Amplitude-Phase)
are affected more by the noise. For example, Figure 11 (b)
illustrates that, under SNR:5 condition, the EIR are 0.93 and
0.52, corresponding to Original and Amplitude-Phase. The
large difference presents that the noise affects the carrying
information in Amplitude-Phase, making representation learn-
ing more challenging. We believe this is the reason why the
feature enhancement module does not work effectively when
the SNR becomes low.

G. Latent visualization

To further verify the effectiveness of our ScSP framework–
(whether a better intra-class concentration is provided), we
applied t-SNE to generate visualizations for latent features
on the Signal-128 dataset. Figure 10 illustrates the t-SNE



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

plot for the raw signal data (Figure 10a), ResNet pre-trained
feature (Figure 10b), contrastive pre-trained feature (Figure
10c), and ScSP pre-trained (Figure 10d). We can witness that
the clusters of latent features under ScSP pre-training (Figure
9d) are more distinct than the ResNet pre-training (Figure
9b). Furthermore, we observe that the ScSP pre-training latent
features present more organized results (with intra-class and
inter-class concentration) than the normal contrastive pre-
trained latent features (Figure 9c) which demonstrates the
effectiveness of our ScSP framework.

VI. CONCLUSIONS

We introduce a novel radio signal pre-processing frame-
work, ScSP, designed to supplement various state-of-the-
art Few-Shot Learning models for the task of modulation
recognition. The ScSP framework employs Info-preserved
augmentations, generating a variety of signal segments and
eliminating associated noises. A feature enhancement module
within the framework aids in simplifying the signal repre-
sentations, thereby fostering efficient representation learning.
Comprehensive experimental outcomes validate the efficiency
of the proposed ScSP framework.
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