
1

GeoDeploy: Geo-distributed Application
Deployment using Benchmarking

Devki Nandan Jha, IEEE Member , Yinhao Li, Zhenyu Wen∗, IEEE Senior Member , Graham Morgan,
Prem Prakash Jayaraman, Maciej Koutny, Omer F. Rana, Rajiv Ranjan, IEEE Fellow

Abstract—Geo-distributed web-applications (GWA) can be deployed across multiple geographically separated datacenters to reduce
the latency of access for users. Finding a suitable deployment for a GWA is challenging due to the requirement to consider a number of
different parameters, such as host configurations across a federated infrastructure. The ability to evaluate multiple deployment
configurations enables an efficient outcome to be determined, balancing resource usage while satisfying user requirements. We
propose GEODEPLOY, a framework designed for finding a deployment solution for GWA. We evaluate GEODEPLOY using both a formal
algorithmic model and a practical cloud-based deployment. We also compare our approach with other existing techniques.

Index Terms—Geo-distributed Web-application, Benchmark, Orchestrator, Multi-objective optimization, Cloud Computing

✦

1 INTRODUCTION

Modern web-applications (WA) like Google, Amazon and
Alibaba pursue a business model where there is a desire
to offer their services to users distributed across the globe
and reachable by the Internet. This global service delivery
has two primary challenges: 1) guaranteeing a uniformity in
quality of service (QoS) to all parts of the world; 2) preserv-
ing privacy while adhering to sovereign laws regarding data
management and distribution [1], [2]. This second point is a
more recent challenge as governments start to organise their
legal frameworks around international data boundaries. For
example, GDPR (General Data Protection Regulation of the
EU) restricts the transfer of personal data in consideration
of nonEU and EU countries alike [3], [4].

To break the barriers, these services are usually geo-
graphically distributed in a multi-cloud environment in a
federated manner [5], [6], [7]. An application supported
in this way is commonly referred to as a Geo-Distributed
Web-Application (GWA). A GWA follows a sophisticated
architecture with a set of web servers deployed close to the
users in order to provide lower latency. Each web server
may have a local database to cache the frequently visited
contents. Moreover, these web servers connect to one or

• D. N. Jha is with Newcastle University, UK and University of Oxford,
UK. E-mail: dev.jha@ncl.ac.uk

• Y. Li, G. Morgan, M. Koutny and R. Ranjan are with Newcas-
tle University, UK. E-mail: {yinhao.li, graham.morgan, maciej.koutny,
raj.ranjan}@ncl.ac.uk

• Z. Wen is with the Institute of Cyberspace Security and the College of
Information Engineering, Zhejiang University of Technology, China. E-
mail: zhenyuwen@zjut.edu.cn (∗Corresponding author)

• P. P. Jayaraman is with Swinburne University of Technology, Australia.
Email: pjayaraman@swin.edu.au

• O. F. Rana is with Cardiff University, UK, E-mail: ranaof@cardiff.ac.uk

This work was supported by the National Nature Science Foundation of
China under Grant 62472387, the China Postdoctoral Science Foundation
under Grant 2023M743403, 2022M713206; the Zhejiang Provincial Natural
Science Foundation of Major Program (Youth Original Project) under Grant
LDQ24F020001

more central databases allowing uninterrupted data access
while maintaining privacy and ethical issues.

Cloud computing provides an opportunity for WA own-
ers to realise global deployment. Currently, there are more
than 267 CPs available in the marketplace, offering numer-
ous host configurations at each datacenter geo-location e.g.,
AWS (Amazon Web Services) offers 275 instances at the Eu-
rope (London) datacenter. Moreover, these hosts are inter-
connected using WAN (Wide Area Network). However, the
available bandwidth between a pair of DCs can be variable.
[8] reported that the ratio of the highest pair to the lowest
pair bandwidth is greater than 20 in both Amazon EC2
(Elastic Compute Cloud) and Microsoft Azure.

1.1 Deployment challenges
Deployment of GWA in a multi-cloud environment is chal-
lenging. A few main challenges considered in this paper are
given below:
A. Importance of deployment location. The response time
is dramatically affected by the location between the user
and the WA host. Fig. 1 shows a significant fluctuation of
the response time when a WA is deployed in London and
numerous users are accessing it from different geo-locations.
It shows that the highest latency is almost six times the
lowest one. Complications arise in deriving suitable GWA
deployment configurations as: a) the user’s location may not
be known before deployment and b) the number of users
in a particular regulatory domain (provisioned by govern-
mental legislation) may not be predicted before deployment.
However, no literature has considered how to tackle this
issue.
B. Importance of choosing host types. Users’ experience
(e.g., response time) is significantly dependent on the ca-
pacity of the hosts executing the GWA. Since the CPs
offer numerous host configurations and the exact GWA
requirements are unknown apriori, the GWA owner may
find it difficult to determine which ones to choose without
executing them. If the hosts can not provision sufficient

2

L0 L5 L10 L15 L20
Location of Users

1

4

7

10

Re
sp

on
se

 ti
m

e
(s

ec
)

Fig. 1: The response time for users sending requests from
different geolocations. L0 represents a specific geolocation
of a User. Ln is chosen randomly from the set of 50 users
distributed in 10 geolocations

computing resources, it will also cause high response time
or even outage problems. In contrast, hiring powerful hosts
may cause underutilisation of computing resources, thus
leading to resource wastage. As a result, the hosts must be
evaluated before deploying the real GWA.
C. Benchmarking geo-distributed web-application. Bench-
marking GWA is challenging from both system and algorithm
perspectives.

System challenge requires an ideal benchmark orchestra-
tor that is able to interact with various CPs, which offer dif-
ferent ways to access their computing resources, and auto-
matically run the benchmark application on these resources
while providing the required evaluation results. However,
most research is focused on single cloud scenarios [9], [10].
Jha et al. tackled the problem of deploying containerised
web-applications on multiple clouds belonging to different
CPs [11], [12]. However, these tools are unable to orchestrate
a GWA benchmarking.

Algorithm challenge on the other hand requires the desired
orchestrator to select the host from a mass of available can-
didates within a limited budget. This challenge is amplified
when we aim to maximise the user’s experience at the
global level. In other words, the orchestrator has not only
to consider which types of hosts should be evaluated, but
also where to run the selected hosts. This can be proved to
be an NP-hard problem [13].

To address the above-explained challenges, the proposed
orchestrator needs to have the following desirable properties.
Close to users. The generated benchmarking solutions need
to deploy the GWA component close to its users, which is
one of the important tricks for reducing the response time
significantly.
Increase the diversity of hosts. Depending upon the appli-
cation type and the workload involved, a solution with a
given host type and location may not be suitable. If we can
evaluate a more diverse set of deployment solutions, with
varying underlying host configurations and locations, we
will have a better opportunity to find a solution to satisfy
the QoS requirements.
Consider the benchmarking time and budget. To bench-
mark a GWA, the time and budget must be under consider-
ation. Both directly influence how many selected deployment
solutions can be obtained and evaluated. Given a budget,
the proposed solution should evaluate a maximum and
diverse set of configurations.

1.2 Overview of Methods and Contributions

In this paper, we propose, develop and validate GEODE-
PLOY that automatically 1) generates a set of candidate
deployment solutions to maximise users’ satisfaction; 2)
runs these candidate deployment solutions over the real
cloud environments and 3) recommends the most suitable
deployment solution based on the requirements. Inspired by
the idea of DevOps, we seek to derive a user-centric GWA
deployment framework which can source a set of candidate
deployment solutions and evaluate these solutions over
existing cloud environments [14]. To the best of our knowl-
edge, this is the first work that considers optimising the
deployment of GWA in a multi-cloud environment through
automated benchmarking.

We summarise the main contribution of our work as
follows:

• We formulate the deployment of GWA using a two-
phase optimisation problem.

• We propose and implement GEODEPLOY as a novel,
user-centric, and cost-efficient deployment orchestra-
tor for GWA. GEODEPLOY tackles the complexities
of GWA deployment by considering the given GWA,
cloud host information and budget constraints. Ini-
tially, the proposed method identifies a set of so-
lutions that optimise both the quality and quantity
of solutions while adhering to the specified budget.
Subsequently, these solutions are automatically de-
ployed in a real-cloud environment, effectively ab-
stracting any low-level cloud-specific dependencies.

• We performed a comprehensive experiment evalu-
ation for GEODEPLOY in a real-world multi-cloud
environment. The evaluation is performed from both
the algorithm and the deployment perspective. A
scalability analysis is also performed to validate the
scalability of GEODEPLOY.

Outline. The remainder of the paper is as follows. To allow
our work to be considered in the context of similar works,
a set of recent and relevant related works are presented in
Section 2. In Section 3, we present the formal model of the
GWA deployment problem. A high-level system design of
GEODEPLOY is presented in Section 4. Before discussing the
details of deployment optimisation in Section 6, an overview
of our proposed Adaptive Particle Swarm Optimisation
algorithm is given in Section 5. The details of experimental
evaluation (numerical analysis and real-world analysis) is
presented in Section 7. Before drawing conclusions and
indicating our plans for future work in Section 9, we provide
a discussion highlighting the limitations of our work in
Section 8.

2 RELATED WORK

Benchmark orchestrator. GWA benchmarks need to be
orchestrated on different host configurations in the multi-
cloud environment. Orchestrating the systematic deploy-
ment of WA requires various steps including benchmark
and host configuration definition, load generation, contin-
uous performance monitoring and controlling the overall

3

process which is complex and error-prone to perform man-
ually [15]. A few frameworks are available for orchestrat-
ing benchmark applications in the literature. µbench[16],
COFFEE [17], Cloud WorkBench [18], Smart CloudBench
[19] and SmartDBO [11], allow the orchestrating of WA
benchmarks for different cloud providers. µBench [16] al-
lows users to define a flexible microservice benchmark but
does not allow it to run on multiple clouds concurrently.
Flexibench [20] can also offer a benchmark orchestrator but
is specific only for database applications. Cloud WorkBench
[18] allows reusable benchmark definition leveraging Chef
and provisioning the benchmark on heterogeneous clouds.
However, defining the benchmark is complex. Smart Cloud-
Bench [19] not only automates the benchmark provisioning
but also provides a comparison between various cloud
providers. COFFEE [17] is an advanced orchestrator which
allows orchestrating different container engines. However,
all these frameworks ignore the cost of benchmarking which
is necessary to consider in cloud environments. SmartDBO
[11] orchestrates the benchmarking process with a simple
user interface allowing users to interact. It also considers the
benchmarking cost and time while selecting the provision-
ing process. However, none of the given works handle the
uncertainty of users’ locations and user-directed interaction
patterns and thus are not able to support the benchmarking
of GWA.

Content-distribution networks (CDN). CDNs share a ge-
ographic user base problem and highlight this issue in the
context of a particular type of GWA [21], [22]. Some common
examples are Akamai CDN [23] and Amazon CloudFront
[24]. CDNs are used to anchor the access of web content,
such as video in a streaming service, at the cost of hosting
and maintaining the contents at the local edge servers while
considering the merging of more widely distributed derived
content. CDN typically only hosts and serves static data
contents while GWA is used for both static and dynamic
data which requires a considered understanding of resource
availability in both a network and computational sense
to ensure expected application orchestration. Additionally,
a CDN belongs to a single cloud provider and focuses
on optimising a global network of edge servers together
with cloud-enabled services to provide cost-efficient net-
work delivery of data to users, a GWA requires deployment
optimisation in a multi-cloud environment. CDN can com-
plement the GWA. Using a CDN can help to reduce the
potential load on a GWA’s server resources thus allowing it
to serve exceeded load capacity. Using the CDN for GWA
deployment is out of the scope of this work.

Optimised deployment. Optimised deployment of software
artefacts (from application to build support) in cloud en-
vironments is an extensively studied problem. Examples
of such approaches describe the optimised deployment
algorithms in the cloud environment [25], [26], [27]. The
main aim of these works is to optimise resource utilisation
while deploying tasks/processes. Although such works are
intended to ascertain a suitable deployment option, they are
not concerned with the analysis of the underlying cloud
environment and consider users’ QoS requirements before
deployment. Any deployment decision there is carried out
by evaluating the system metrics provided beforehand. This

is in distinct contrast to our approach which not only
considers user-related issues but also issues that may span
international boundaries and geographically inspired con-
straints.

Additionally, traditional cloud-edge offloading systems
are developed for stream processing applications, which
seek to derive minimal computing resources for maintaining
stream operations while satisfying QoS requirements [28],
[29]. These works do not apply to our purposes as such ap-
plications are concerned with large volume data distribution
in, primarily, one direction whereas GWAs are interactive
and responsive user-driven services.

Geo-distributed orchestration system. Orchestrating the
application in a geo-distributed manner has been well stud-
ied [30], [31], [32]. Wen et al. focus on optimising the deploy-
ment of scientific workflow across federated clouds [31].
These applications have a well-defined computation logic,
which is easy to optimise and deploy. However, orches-
trating or scheduling big data systems in geo-distributed
environments is still a challenge. Huang et al. presented a
framework, Yugong, for data and job placement for geo-
distributed datacenter for Alibaba cloud considering band-
width as a main factor [30]. A similar method is proposed
by Yang et al. to effectively run the big data systems across
multiple cloud datacenters while considering the limita-
tion of bandwidths [33]. Marchese et al. proposed a geo-
distributed cloud-to-edge orchestration framework using
Kubernetes [32]. Pallewatta et al. designed a framework for
scalable placement of microservices-based IoT applications
in federated Fog environments [34]. However, these systems
are not sensitive to the response time for users, compared
to GWA, and therefore do not consider the latency caused
when users’ requests are submitted from different locations.
The proposed GEODEPLOY is a novel system that tackles the
challenge of benchmarking GWA, which aims to maximise
users’ satisfaction (e.g., low response time). The users may
send their requests from all over the world.

3 SYSTEM OVERVIEW

This section describes the GWA deployment model and for-
malises the candidate selection problem to an optimisation
problem.

3.1 Web-application deployment model

A GWA is given as a directed graph Gweb = (Vweb,Eweb),
where the nodes Vweb = {v1web, . . . , v

n
web} represent the web

application components (microservices), and the arcs Eweb
represent the dependency between components, including
data flow and transactions.

The computing resources are given as a complete di-
rected graph Gres = (Vres,Eres), where the nodes Vres =
{v1res, . . . , v

m
res} represent available hosts and the edges Eres

represent the network connections among the hosts. For
each host vires ∈ Vres:

• hvi
res
∈ H is the host type of vires,

• locvi
res
⊆ L is a nonempty set of datacenter geo-

locations of vires,
• P(vires) is the unit execution cost of vires,

4

TABLE 1: A summary of symbols used in the paper

Symbols Description
Gweb = (Vweb,Eweb) Graph of GWA
Gres = (Vres,Eres) Fully connected graph of cloud provider hosts
vires ∈ Vres Host i of Gres

hvi
res
∈ H Host type for host vires

locvi
res
∈ L Datacenter geo-location for host vires

θ ∈ Θ A deployment mapping/solution in the set of solutions Θ

P(θh(viweb)) Unit execution cost for host mapping θh(viweb)
O(viweb) Total execution time of viweb
N (θh(viweb), θ

h(vjweb)) Unit data transfer cost from θh(viweb) to θh(vjweb)

D(viweb, v
j
web) Size of data transferred from viweb to vjweb

Cθ
exe, Cθ

com Execution cost and transfer cost for a solution θ

Cθ Total cost of a solution θ
Θ′ Optimal subset of Θ
B User’s budget
s Population of particle
P,Plocal,Vel Set of position, local best position and velocity of particles
Pglobal
best Global best position vector

ζ Optimisation objective (maximise or minimise)
Pfinal Output solution set
η = |P|final Number of output solution
ω Inertia weight
C1, C2 Self recognition and social constant factor
K,Kmax Optimal and maximum cluster size
Clus = {Clus1, . . . , ClusK} K disjoint clusters
uj Data point representing cluster center for Clusj
ai Data point representing host vires

• N (vires, v
j
res) is the unit data transfer cost from vires to

another host vjres ∈ Vres.
Note that we may have N (vires, v

j
res) ̸= N (vjres, vires).

To model deployments of web applications to cloud
providers, we use deployment mappings θ : Vweb → Vres × L
and denote θ(viweb) = (θh(viweb), θ

l(viweb)), for every GWA
component viweb. We also require that the following are
satisfied, for all distinct GWA components viweb and vjweb:

• θl(viweb) ∈ locθh(vi
web)

,
• hθh(vi

web)
= hθh(vj

web)
,

• θh(viweb) ̸= θh(vjweb) and θl(viweb) ̸= θl(vjweb) .

The set of all deployment mappings is denoted by Θ.
Figure 2 shows an example of one of the solutions θ.
Note that, for a deployment mapping, the host types of
hosts allocated to all the GWA components do not differ.
Moreover, the hosts and locations allocated to distinct com-
ponents must be different.

Table 2 shows the possible number of deployment map-
pings by varying the numbers of GWA components and
hosts, assuming that there is only one host type, and that
each host has only one geo-location (in such a case, there
are exactly n! ·

(m
n

)
= n! · m!

n!(m−n)! = m!
(m−n)! different

deployment mappings). Note that even for relatively small
numbers of GWA components n = 30 and hosts m = 50, the
number of possible deployment mappings is overwhelming,
and so the selection of optimal deployment mappings can-
not be done by any brute-force approach.

3.2 Problem formulation
Our approach is first to identify a possibly widest range of
deployment options with varying host types and locations
adhering to the available budget, and then to benchmark
these to obtain an optimal deployment. We formulate such
a two-phase approach in the following way.
Phase I. We aim to find the largest set of deployment
mappings with the total cost within a given budget B.

For each deployment mapping θ ∈ Θ, we consider two
types of costs (in terms of time), namely the execution cost

A

A'

A

B

A'

B

θ

Fig. 2: An example of the deployment mapping θ between
Gweb and Gres

Cθexe, and the communication cost Cθcom, as shown in Eq.1,
where O(viweb) is the total execution time for a GWA com-
ponent viweb and D(viweb, v

j
web) is the size of data transferred

from a GWA component viweb to another GWA component
vjweb. The cost model is based on the Pay-As-You-Go pricing
model. The choice of the Pay-As-You-Go model is based on
the wide adoption by all cloud providers, which makes the
cost model generalised.

Cθexe =
n∑

i=1

O(viweb) · P(θh(viweb))

Cθcom =
n∑

i,j=1∧i ̸=j

D(viweb, v
j
web) · N (θh(viweb), θ

h(vjweb))

Cθ = Cθexe + Cθcom

(1)

We then formulate our goal as an optimisation problem
given by Eq. 2 together with the formulas for deployment
costs given by Eq. 1.

maximize: |Θ′| where Θ′ ⊆ Θ

subject to:
∑
θ∈Θ′

Cθ ≤ B (2)

Phase II. In this phase, the set of deployment mappings Θ′

obtained in Phase I is deployed and executed on a real-cloud
environment with the execution results being collected. The
deployment mapping with the “minimal” response time is
then selected and used for the actual deployment of GWA
components.

4 GEODEPLOY ARCHITECTURE

To address the problem outlined in Section 3.2, we designed
GEODEPLOY. This section summarises the basic architec-
ture.

TABLE 2: Number of deployment mappings generated by
varying the number of GWA components and the number
of hosts

GWA
comp.

Number of hosts
30 35 40 45 50

5 2.E+07 4.E+07 8.E+07 1.E+08 3.E+08
10 1.E+14 7.E+14 3.E+15 1.E+16 4.E+16
15 2.E+20 4.E+21 5.E+22 5.E+23 3.E+24
20 7.E+25 8.E+27 3.E+29 8.E+30 1.E+32
25 2.E+30 3.E+33 6.E+35 5.E+37 2.E+39
30 3.E+32 9.E+37 2.E+41 9.E+43 1.E+46

5

Fig. 3: System Architecture of GEODEPLOY

GEODEPLOY is a user-centric and cost-effective middle-
ware that aims to offer a full-stack deployment solution for
GWAs. It is a comprehensive integration tool that receives
the test GWA, Budget, maximum cluster size and the test
plan as input, generates an optimal set of solutions and
automates the deployment of GWA solutions on multiple
clouds. The final outcome is the best deployment solution
with a minimal response time. There are two main com-
ponents of GEODEPLOY: deployment planner and deployment
orchestrator, as depicted in Fig. 3.

A. Deployment planner. When GWA, budget and the
maximum cluster size are submitted to GEODEPLOY, the
deployment planner utilises this information to generate a
set of deployment solutions. It uses the pre-collected cloud
host information and applies either the proposed algorithm
(described in Section 6) or other baseline methods such as
Random Selection and Greedy approach.

B. Deployment orchestrator. After receiving the set of de-
ployment solutions generated by the deployment planner, it
performs a sanity check to validate the solutions. It then
automatically deploys the solutions in the real cloud en-
vironment. First, the Resource provisioner extracts the host
details and geo-location and initiates a host. The framework
has predefined APIs for each host type and cloud service
provider which helps to initiate the host and establish a
network connection. All this is performed automatically and
is hidden from the user. It then starts the Load generator
from the pool of host information stored which act as clients
for benchmarking. Each client is specified with a test plan
provided by the user. The test plan contains the request
sending rate, request types, the number of total requests and
execution time. After starting the clients, communication is
established between the clients and the GWA hosts and the
tests are performed. Finally, the Result aggregator collects the
results including users’ response time and system statistics,
and then returns a suitable deployment solution for the
given GWA. More details of the deployment process are
provided in Section 6.5.

5 ADAPTIVE PSO ALGORITHM

Particle Swarm optimisation (PSO) is a well-known optimi-
sation algorithm used to find a solution in a multidimen-
sional space [35]. However, in the high-dimensional space,
the convergence rate is low with the chance of falling into
local optima. Numerous updated versions of PSO have been

proposed for task scheduling in the cloud environment, e.g.,
Nested PSO [36], Multitask PSO [37].

In this section, we propose Adaptive Particle Swarm Opti-
misation (APSO) algorithm which is able to find a solution
without getting stuck in the local optima. The primary nov-
elty of APSO lies in its adaptive mechanism, which dynam-
ically adjusts its parameters during optimisation based on
problem characteristics and search progress. This contrasts
with traditional algorithms like Genetic Algorithms (GA)
and Ant Colony Optimisation (ACO) that employ fixed
parameters, potentially hindering their performance in com-
plex multi-cloud scenarios. Compared to these traditional
algorithms, APSO offers several advantages in terms of
scalability, solution quality, and convergence speed as given
below:

• Scalability: APSO’s adaptive nature empowers it to
efficiently handle large-scale optimisation problems
with numerous decision variables and constraints, a
common challenge in multi-cloud environments. Tra-
ditional algorithms like GA and ACO may struggle
with scalability, leading to increased computational
costs or suboptimal performance.

• Quality: By balancing exploration and exploitation
through its adaptive mechanism, APSO frequently
discovers higher-quality solutions, often reaching
global or near-optimal configurations. This surpasses
algorithms like GA and ACO, which can suffer from
premature convergence or slower convergence rates,
resulting in less optimal solutions.

• Convergence: APSO’s adaptive parameter tuning
and efficient search space navigation often lead to
faster convergence compared to GA and ACO. This
advantage translates to quicker solutions, particu-
larly valuable in time-sensitive optimisation tasks
within multi-cloud environments.

Alg.1 illustrates the key steps of the proposed APSO. In
concrete terms, we first initialise three sets of vectors, each
having s elements:

P = {P⃗1, . . . , P⃗s}
Plocal = {P⃗ local

1 , . . . , P⃗ local
s }

Vel = {V⃗el1, . . . , V⃗els}

P records the set of current deployment solutions; each P⃗i

represents a deployment mapping θi. Plocal stores the best
deployment solution obtained for each P⃗i during any run-
time iteration. In Vel, each V⃗eli represents the vector variable
to update the value of P⃗i.

We initialise P⃗i by randomly mapping a host from
Vres for each component of the GWA. The generated P⃗i is
checked for the validity of the deployment mapping using a
Valid Particle Generator (VPG) as specified by the constraints
in Section 3.2 and retained only if it is found valid (Alg.1
Line 4-6). Otherwise, it is discarded and, eventually, a valid
deployment mapping is derived. Then, Plocal is assigned P
for all s components.
To allow a uniform update of the current deployment solu-
tion P⃗i to a new P⃗ new

i , V⃗eli is initialised to a set of randomly
generated integer values between −|Vres| and |Vres| (Alg.1
Line 8).

6

Inertia weight (⍵)𝑷𝒊

Self Recognition
(C1)

𝑽𝒆𝒍𝒊

Social Constant
(C2)

𝑷𝒊𝒍𝒐𝒄𝒂𝒍𝑷𝒊𝒏𝒆𝒘

𝑽𝒆𝒍𝒊𝒏𝒆𝒘
𝑷𝒃𝒆𝒔𝒕
𝒈𝒍𝒐𝒃𝒂𝒍

Fig. 4: Movement of a solution Pi in APSO

Next, the cost Ci of each P⃗i is computed by using Eq.1
(Alg.1 Line 10). The cost Ci represents the fitness function for
APSO. Based on the obtained cost values, we can select η set
of solutions Pfinal as shown in Alg.1 Line 13. An additional
parameter ζ is added which represents the objective of
the algorithm (i.e., find a list of deployment solutions that
maximises or minimises the fitness function and η). We
choose the P⃗i with the optimal cost value as the global best
solution P⃗

global
best (Alg.1 Line 15).

To find better deployment solutions (update P⃗i to P⃗ new
i)

APSO uses four vector variables, P⃗i, V⃗eli, P⃗ local
i and P⃗

global
best .

First, it computes V⃗el
new
i , which is the key variable to update

P⃗i, as three variables influence it, as follows. ω defines
how much V⃗eli can contribute to the updating process.
C1 and C2 are the factors which affect similarity between
P⃗ new
i − P⃗ local

i and P⃗ new
i − P⃗

global
best respectively. Two randomly

generated variables F1 and F2 are used to reduce the bias
introduced by P⃗ local

i and P⃗
global
best . Finally, the search space

is restricted by using a modulo operation with |Vres|. Eq.3
summarises the changes:

V⃗el
new
i = (ω · V⃗eli

+ C1 · F1 · (P⃗ local
i − P⃗i)

+ C2 · F2 · (P⃗ global
best − P⃗i)) mod |Vres|

(3)

Despite the novelty of our APSO approach, the funda-
mental tasks performed by variables C1 and C2 in guiding
particle movement and convergence remain unchanged.
Therefore, to maintain alignment with established method-
ologies and ensure comparability with prior research, we
opted to retain the variable values to two as those used in
past works [38]. The values of F1 and F2 are generated
randomly between 0 and 1 following a uniform distribution.
The new deployment solution P⃗ new

i is computed using the
existing solution P⃗i and the new V⃗el

new
i , as shown in Eq.4:

P⃗ new
i = (P⃗i + V⃗el

new
i) mod |Vres| (4)

The new deployment solutions are checked and the cost
for the valid solutions is calculated. If the new cost Cnew

i is
better than the fitness value of P⃗ local

i and P⃗
global
best , it should be

updated (Alg.1 Line 26-29). Finally, we update the solutions
Pfinal by replacing the existing solutions with those in P⃗ new

which have better cost values (Alg.1 Line 31). The described
steps (Alg.1 Line 16-29) are repeated until the termination
condition is met.
Termination. In this paper, terminate is set to true after 100

iterations or if there is no updating of the P⃗
global
best in 30

iterations. After the termination, Pfinal is returned as output.

Algorithm 1: Adaptive PSO

Input: Gweb = (Vweb,Eweb) - dependency graph of
the web-application, Gres = (Vres,Eres) -
connection graph of cloud providers host, ζ -
optimization parameter

Output: Pfinal - list of η resulting solutions
1 s - population size
2 for i = 1, . . . , s do
3 // Initialize P, Plocal and Vel
4 P⃗i ← rand (0, |Vres|)
5 // Validate P⃗i

6 P⃗i ← VPG (P⃗i)
7 P⃗ local

i ← P⃗i

8 V⃗eli ← rand (−|Vres|, |Vres|)
9 // Compute the fitness function Ci using Eq. 1

10 Ci ← CP⃗i
exe + CP⃗i

com
11 end
12 //Initialize Pfinal
13 Pfinal ← sort(P, C, ζ)[0, η − 1]
14 // Initialize the global best solution
15 P⃗

global
best ← Pfinal[0]

16 //Repeat until the termination
17 while ! terminate do
18 //Update the solutions
19 for i = 1, . . . , s do
20 P⃗ new

i , V⃗el
new
i ← update (P⃗i, V⃗eli, P⃗ local

i , P⃗
global
best)

21 // Validate the updated solution P⃗ new
i

22 P⃗ new
i ← VPG (P⃗ new

i)
23 // Compute the fitness function Cnew

i using
Eq. 1

24 // update the local best solution
25 if Cnew

i is better than Ci then
26 P⃗ local

i = P⃗ new
i

27 if Cnew
i is better than Cglobal

best then
28 //update the global best solution
29 P⃗

global
best = P⃗ new

i

30 end
31 //Update the output
32 Pfinal ← Replace(P⃗new, Pfinal)
33 end

6 OPTIMISING THE DEPLOYMENT

This section presents a detailed description of the proposed
approach which consists of the following four main com-
ponents: (A) clustering, (B) budget allocation, (C) deployment
solution generation, and (D) benchmarking in real-world envi-
ronments.

6.1 Overview of executing GEODEPLOY

To obtain the “best” deployment solution, each component
is executed sequentially as shown in Alg. 2 and Fig. 5.
An input set should be provided, in which the GWA and
benchmarking budget B are provided by the user. The host
information Vres including the CPU, memory, location and
price, about each provider is pre-collected. In the first step,
we partition the hosts into K clusters (see Alg. 2 Line

7

Algorithm 2: GEODEPLOY’s algorithm overview

Input: Gweb = (Vweb,Eweb) - dependency graph of
the web-application, Gres = (Vres,Eres) -
connection graph of cloud providers host,
Kmax - maximum cluster size, B - User’s
Budget, TP - Test plan,

Output: θ - obtained solution
1 // Partition Vres hosts into K clusters
2 K,Clus← Clustering(Kmax, Vres)
3 // Allocate B to K clusters
4 allocateBudget(Clus, B)
5 // Generate solutions for each cluster
6 Θ← genSolution (Clusi, Bi) for each i ≤ K
7 // Benchmark the selected solutions and choose

the best solution
8 θ← Benchmark (Θ, TP)

Hosts

C1

C2

C3

BudgetC1

C2

C3

Deployment
solutions

Budget

Budget

Geo-distribution clouds

Deploy &
execution

Select the
best solution

Result collection

Clustering

Clustering

Clustering

Budget
allocation

Budget
allocation

Budget
allocation

Solution
Generation

Solution

Generation

SolutionGeneration

1
2

3

4

5
Generate report

Provide
web-application
and other
information

6

Fig. 5: The execution workflow of the proposed method

2). Next, the given budget B is allocated to K clusters in
step 2 (Alg. 2 Line 4). In step 3, based on the allocated
budget, clustered hosts and other provided information, a
set of deployment solutions is generated (see Alg. 2 Line
6). The obtained solutions are automatically deployed and
executed on the corresponding hosts (step 4). Finally, the
benchmarking results are collected and then a report is
generated and sent back to the user (illustrated in Alg. 2 Line
8). The following subsections indicate the technical details of
each key component.

6.2 Clustering
Our first step is to create a set of clusters to partition the
nodes in Vres, i.e., each node vires ∈ Vres is mapped to exactly
one cluster with all the nodes belonging to the same cluster
bearing similar host type characteristics (h ∈ H). Each host
type h is associated with many aspects of resources such
as CPU, memory, storage, bandwidth, etc. In this paper, the
clustering algorithm considers CPU and memory proper-
ties. We employed K-MEANS algorithm to create K disjoint
clusters Clus = {Clus1, . . . ,ClusK} [39].

Note that the parameter K needs to be found and input
to the K-MEANS algorithm, and determining K is essential
to achieve optimal partitioning. We employed the Elbow
Method to find this value [40]. It receives Kmax as input
and starts with different values of k ∈ {0, 1, ...,Kmax} and
computes a total Intra Cluster Variation ICVk for each cluster
size k (Alg. 3 Line 6). The difference between ICVk and

Algorithm 3: Clustering algorithm
Input: Kmax - maximum cluster size, Vres - cloud

hosts
Output: Clus = {Clus1, . . . ,ClusK} - obtained

clusters
1 // Apply Elbow method to get the optimal K
2 for k = 2, . . . ,Kmax do
3 // Apply K-MEANS
4 Clusk ← K-MEANS(Vres, k)
5 // Compute Intra-Cluster Variation
6 ICVk ←

∑k
j=1

∑
ai∈Clusj ||ai − uj ||2

7 end
8 //Find the knee point
∆ICVk,k+1 ← |ICVk+1 − ICVk| for each k < Kmax

9 K = k(kneedk,k+1(∆ICVk,k+1))
10 // Find the final cluster
11 Clus← K-MEANS(Vres,K)

Function: K-MEANS (Vres,K)
1 // Initialise cluster center
2 uk ← rand (vi) for vi ∈ Vweb and k ∈ K
3 while ! terminate do
4 // vi is allocated to a cluster
5 for each vi ∈ Vweb do

6 cik ←
{

1 if l = arg min
j
||vi − uk||2

0 otherwise
7 end
8 //Update the cluster center
9 for k = 1, . . . ,K do

10 uk ←
∑

i(cik×vi)∑
i cik

11 end
12 end

ICVk+1 is determined for all k, k + 1 and the knee point
is detected using kneed library (Alg. 3 Line 9). The resulting
value of K represents the optimal cluster number.

K-means clustering is then performed on the obtained
cluster size K . Initially, each cluster Clusk is assigned to
an arbitrary cluster center uk (Alg. 3 Line 2). A data point
vi including CPU and memory information is allocated
to a cluster Clusk based on the closeness to the cluster
center uk as shown in Alg. 3 Line 6. Here, || · || represents
the function (Euclidean function) to measure the distance
between the data point vi and the cluster center uk. The
value cik can be either 1 if vi is allocated to cluster Clusk
or 0 otherwise. With each iteration, uk is also updated (Alg.
3 Line 10). These steps are repeated until the termination
condition reaches which in our scenario is the cluster center
uj remains unchanged.

The pseudo-code for the clustering algorithm is given
in Algo.3. It is worth mentioning that the clustering stage is
performed only once on a host data set. The stage is repeated
only when the dataset is changed.

6.3 Budget allocation
As we discussed above, deployment solutions are generated
for each cluster, so it is necessary to fairly distribute the
given budget B to the clusters Clus.

8

Algorithm 4: Budget allocation
Input: Clus1, . . . ,ClusK - clusters of hosts, B - user’s

Budget
Output: B1, . . . ,BK - clustered budget

1 for k = 1, . . . ,K do
2 // Get solution with maximum total cost
3 Θmax ← APSO(Clusk, ζ = maximization)
4 θmax

k = Θmax[0]
5 // Get solution with minimum total cost
6 Θmin ← APSO(Clusk, ζ = minimization)
7 θmin

k = Θmin[0]
8 // Compute the average cost Ckav

9 Ckav =
Cθmax

k
+C

θmin
k

2
10 end
11 // Distribute the budget B
12 Bk =

Ck
av∑K

i=1 Ci
av
· B for each k ≤ K

Since the unit execution cost P(vires) of host vires varies
from one cluster to another, it is not suitable to divide
the budget B equally among the clusters. The average
cost for benchmarking a cluster is a good reference for
budget distribution to ensure fairness. However, evaluating
the average cost for a cluster requires computing the cost
of each possible solution which is not feasible otherwise.
Alternatively, we use the mean of solutions which have the
maximum and minimum cost as the reference to distribute
the budget B. To this end, we interact our Alg. 4 with the
APSO (discussed in Section 5). For each cluster Clusk ∈ Clus,
we first obtain a solution with maximum cost Ckmax and
minimum cost Ckmin by setting the optimisation constraint
ζ as maximisation and minimisation respectively (see Alg. 2
Line 3-7). Next, the average cost for each cluster k, Ckav is
computed by normalising the maximum and minimum cost
(Alg. 2 Line 9). Finally, the user’s budget B is distributed to
each cluster Clusk using the equation in (Alg. 2 Line 12) and
Bk is returned.

6.4 Deployment solution generation

In this stage, the cluster budget Bk is distributed to find a set
of solutions for each cluster Clusk as given in Alg. 5. First,
we generate η set of solution Pk for each cluster k using
the APSO algorithm (Line 3). Next, each solution Pk[ik] is
added individually to a final list Θfin

k till no solution can be
added in the remaining budget Bleftk (Line 6). To maximise
the utilisation of the budget, we combine all the remaining
cluster budget Bleftk (Line 12). Later, the budget Bleft is
allocated to each cluster in descending order based on its
reference (refer to Alg. 2 Line 9) to compute more solutions
(Line 14-18). Finally, the clustered solutions Θfin

k from each
k cluster are merged to get the final list of solution Θ′ for
the real deployment.

6.5 Benchmarking in real-world environments

The solutions Θ′ obtained in the previous step are deployed
using the deployment orchestrator discussed in Section 4. To
execute an optimised solution θ, first the resource provisioner

Algorithm 5: Solution generation
Input: Clus1, . . . ,ClusK - clusters of hosts,

B1, . . . ,BK - clustered budget
Output: Θ′ - optimized list of hosts

1 // Get a set of solution Θk for each cluster k
2 for k = 1, . . . ,K do
3 Pk = APSO(Clusk, ζ = minimization)
4 Btemp

k = 0, Θk = [], ik = 0

5 while (Btemp
k ≤ Bk) do

6 Θ
fin
k ← Pk[ik]

7 Btemp
k ← Btemp

k + CPk[ik]

8 ik ← ik + 1
9 end

10 end
11 // Compute the remaining budget Bleft

12 Bleft ←
∑K

k=1(Bk − B
temp
k)

13 // Utilize Bleft to add more solutions
14 for k = K, . . . , 1 do
15 if Bleft ≤ CPk[ik] then
16 Θ

fin
k ← Pk[ik]

17 Bleft ← Bleft − CPk[ik]

18 ik ← ik + 1
19 end
20 end
21 // Merge the solutions Θfin

k to get the final list Θ′

22 Θ′ ← Θ
fin
k for each k ≤ K

extracts the host information including instance configu-
rations (h, loc and p). Next, communication is established
with the instance. The communication is performed using
cloud-specific APIs defined in the Go language. After the
successful initialisation of GWA hosts, each host is installed
with the specific Docker images and communication is
established between various GWA components.

A similar process is followed to initiate the client hosts
required for the load generator. The deployment orchestrator
is notified with the successful establishment of GWA and
client hosts. Following this, the state of deployment along
with the IP address of the hosts is returned.

With the successful establishment of GWA hosts, the
client hosts are launched with the defined test plan and the IP
address of the web server GWA components. Since there are
multiple web server GWA components, a simple geo-location
rule-based load generation was developed, i.e., the client will
load the nearest web server host in terms of geo-location.
The client hosts are triggered to load the web server hosts
and the execution starts.

The completion of an experiment is reported to the
deployment orchestrator and the result aggregator retrieves the
results from the clients. The hosts are terminated and the
cloud resources are released. Finally, the result aggregator
compares all the results and returns the best solution θbest

to the user.

6.6 Complexity analysis

This section computes the worst-case time complexity of our
proposed framework, GEODEPLOY. GEODEPLOY consists of

9

four main components as given in Fig.5, the complexity
of clustering, benchmarking in real-world environment is O(1).
The complexity of budget allocation and deployment solution
generation depends on the complexity of APSO. In our case,
the complexity of APSO depends on the population space
s << |Vres|, number of GWA components |Vweb| and the
maximum number of iteration before termination κ is given
as O((s + s log s + κ) × |Vweb|). Here, κ and s are constant
thus reducing the complexity of APSO to be O(|Vweb|).

Since the number of clusters K is a constant, the com-
plexity of budget allocation and deployment solution generation
are also equal to O(|Vweb|). Therefore, the overall worst-
case complexity of our proposed approach is O(|Vweb|). The
result is also validated with real experiments as given in
Section 7.4.

7 EVALUATION

In this section, we evaluate GEODEPLOY, aiming to assess
the quality and quantity of solutions obtained at each
step of the proposed approach from both algorithmic and
deployment perspectives. Initially, we conducted numer-
ical analysis on real data collected from various cloud
providers, resulting in a refined set of deployment solutions
subsequently implemented in a real multi-cloud environ-
ment. Our comparison involved evaluating the diversity
and scalability of our proposed algorithm in contrast to
baseline methods. Our experiment section is divided into
the following subsections. In Section 7.1, we discuss the
experiment setup detailing the benchmark application, load
generator, and the comparative evaluation methodology.
Section 7.2 presents the results of numerical analysis show-
ing the variation of solutions generated and budget utilised
by GEODEPLOY. It also highlights the diversity of results
obtained by GEODEPLOY compared to the state-of-the-art
methods. Section 7.3 provides insights from the real ex-
periment, offering a comprehensive view of the project’s
performance in practical scenarios. Finally, to demonstrate
the effectiveness of the proposed in a scaled environment,
Section 7.4 presents the scalability test results.

7.1 Experiment setup

Dataset and benchmark application. We considered three
main cloud providers i.e., AWS1, Microsoft Azure2 and
Google Cloud3 and for each of them we selected four
datacenters located in UK South (London), US West (Oregon),
South America (Sao Paulo) and Asia Pacific (Singapore). As a
result, the input of our algorithm includes 776 host config-
urations together with their execution and communication
costs, which are available on GitHub4.

We consider a simple GWA which consists of three com-
ponents; one central database and two web servers. Each
web server is associated with its local database. The web
servers are configured to handle both text and image data,
with 50% of the data distributed across the two servers,

1. https://aws.amazon.com/ec2/pricing/on-demand/
2. https://azure.microsoft.com/en-gb/pricing/details/virtual-

machines/linux/
3. https://cloud.google.com/compute/vm-instance-pricing
4. https://github.com/DNJha/GeoDeploy

while the entire dataset is stored in the central database. All
these components are dockerised and the images are stored
on the Docker hub.
Load Generator. In our evaluation, we used a load generator
to emulate realistic workloads. The load generator was
designed to mimic the statistical properties of real-world
application workloads. The load generator is implemented
as a web application deployed on AWS t2 − medium UK
South (London) datacenter. A pool of 50 users is emulated
depending on the given datacenter geo-location. Each user
is specified to execute and generate load from any given
geographical area. To access the GWA application, a random
set of users is selected based on a normal distribution. Again,
the users are mapped to the closest web-server using geo-
location rule-based load generation as specified in Section 6.5.
Evaluation methodology. Since Random and Greedy ap-
proaches are the most straightforward solutions directly
applicable to such optimisation problem [41], [42], this paper
considers them as a baseline approach and compares the
proposed approach with them. More advanced algorithms
can be adopted to work with our system in the future. We
compare our algorithm with the following three adaptive
baseline algorithms:

• Random Selection (Random) – we randomly select the
solution until the budget is exhausted.

• Greedy with Computation Cost (Greedy) – we select
the solutions starting from the cheapest computation
cost until the budget is exhausted. The fitness func-
tion is Θ′ ←

∑
k θ

min
k where, θmin

k is a valid solution
with cheapest computation cost. In each round, the
selected solution is popped from the list and the step
is repeated till the budget is available.

• Clustered Greedy with Computation Cost. (Clus.Greedy)
– we first create K clusters and for each cluster. we
apply the Greedy strategy to obtain the solutions.

7.2 Numerical analysis

Environment settings. We evaluated GEODEPLOY and the
baseline comparison algorithms on a PC with Intel(R)
Core(TM) i5-6200U CPU @2.3GHz - 2.4GHz with 16 GB
memory and 512 GB SSD.
Parameter settings. We set the same inputs for all the
evaluated algorithms. The budget is varied from $100 to
$400. The selected budget of $100 to $400 strikes a balance
between affordability and effectiveness, allowing for a range
of testing activities while remaining mindful of budgetary
considerations. To find the data transfer size, we performed
a simple analysis in a controlled environment. The result
shows that each user request consumes 25–500 KB per
second. For evaluation, we assume that approximately 50–
200 users attempt to access a component of the GWA in
any given hour. This is randomly chosen based on the
average number of users accessing a web server for a small
organisation. Combining these two values, the size of the
data transferred among the components of a GWA can vary
between 4.3 and 344 GB/hour. Following this result, in our
evaluation, we set the size of the data transferred among
the components of a GWA via randomly selecting values
between 4.3 and 344 GB/hour.

10

0 2 4 6 8 10
No of clusters

0.00

0.25

0.50

0.75

1.00

In
tra

-c
lu

st
er

 v
ar

ia
tio

n
1e7

(a) Elbow Method

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(b) K-means Clustering Result

Fig. 6: Clustering the given data to find the best cluster size
(a) and clustering result (b).

$100 $200 $300 $400
Budget

0

10

20

30

40

Nu
m

be
r o

f s
ol

ut
io

ns Random
Greedy
Clus. Greedy
Proposed

(a) Number of solutions generated

$100 $200 $300 $400
Budget

0
10
20
30
40
50
60
70

Le
ft

Bu
dg

et
 ($

)

Random
Greedy
Clus. Greedy
Proposed

(b) Average total unutilized budget

Fig. 7: Numerical evaluation result comparing the number
of solutions generated and the unutilized budget. Black bar
on top represents the standard deviation.

7.2.1 Clustering

We apply a clustering technique to partition the host con-
figurations into distinct clusters, a crucial preliminary step
in our approach aimed at enhancing diversity. To maintain
a manageable size for each cluster and facilitate effective
analysis, we set the max cluster size at 10. Utilising the Elbow
method, an intermediate step in our clustering process, we
analyse the intra-cluster variation, as illustrated in Fig. 6a.
This analysis shows that 3 represents the optimal cluster
size, subsequently guiding our clustering procedure. With
this optimal value determined, we proceed to cluster our
data using K = 3. The resulting clusters, along with their
respective centroids denoted by black circles, are visualised
in Fig. 6b. This comprehensive clustering approach enables
us to effectively manage and analyse the diverse host con-
figurations within our system.

7.2.2 Number of solutions vs. budget

In this subsection, we show the number of solutions gen-
erated by each approach. Fig. 7a shows that our algo-
rithm obtained more solutions compared to Random and
Clus.Greedy for all the cases. On average our algorithm
generates 72.5% more solutions than Random and 40.5%
more solutions than Clus.Greedy. Moreover, the proposed
algorithm is comparable with the Greedy approach with an
average of 6% fewer obtained solutions. Since Greedy con-
centrates on host configurations with low computation cost,
the expected number of solutions is high, however, GWAs
always have a high amount of data transfer which is not

covered by this approach leading to a comparable number
of solutions.

Fig. 7b shows our algorithm outperforms in utilising
budget compared to others, being more than 17 times better
than Clus.Greedy. The wasted budget for Random is too
variable, indicated by its high error rate (standard deviation)
in Fig. 7b, and on average the wastage is almost 14× as
compared to our proposed approach. Again, the unutilised
budget with Clus.Greedy is very high with an average of
16× higher as compared to the proposed method. The result
shows that Greedy and Clus.Greedy are not able to generate
diverse solutions.

7.2.3 Effectiveness of diversity
The key to finding the most suitable hosts for a GWA is to
increase the diversity of the hosts in the generated solutions.
Fig. 8 shows the diversity of results computed by different
algorithms with the budget $400, where the yellow dots
are the available hosts and the triangles represent the hosts
selected by different algorithms.

The results (Fig. 8d) clearly show that our proposed ap-
proach is scattered better than others. The Random Selection
approach also provides good scatter but the total number of
solutions is 68% lower that the proposed algorithm. The
Greedy approach has the worst diversity and the total num-
ber of solutions is 85% lower than the proposed approach.
Clus.Greedy has better diversity, compared to the Greedy ap-
proach. However, there are no solutions selected for smaller
size host configurations as shown in Fig. 8c. The reason
behind this is that the total budget is distributed according
to the average computation cost only. The communication is
established only if the solution is valid and selected which
can not be predicted beforehand. Since GWA have high data
communication costs, none of the solutions can be selected
in the allocated budget. This results in the selection of an
average of 75% fewer host configurations as compared to
the proposed approach.

7.3 Real cloud environment analysis

Execution environment. Once the selected deployment so-
lutions are obtained by our algorithm and baseline algo-
rithms, GEODEPLOY can automatically deploy the obtained
solutions, based on the provided host configurations and
locations.

To evaluate the advances of our proposed algorithm, we
deploy all the solutions generated from different algorithms
in Section 7.2.2 with budget $100 on the real cloud envi-
ronment using the GEODEPLOY orchestrator as discussed in
Section 4.

In each experiment, we evaluated the solutions by using
both text data and image data and computed its response
time. Each experiment is performed with three different
request rates of 500, 1000 and 2000 per minute specified in
the Test plan. The maximum permissible response time for
GWA is set to 60 seconds after which a Timeout is notified.
Response result. Fig. 9a shows the average response time
obtained for the best solution. The result shows that the
obtained solution outperforms the comparators with an
average of 3.3× and 1.3× lower response time compared
to Random and Clus.Greedy respectively. We observe that in

11

0 50 100
CPU cores

0

100

200

300

400

500
M

em
or

y
siz

e
(G

B)

(a) Random selection algorithm

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(b) Greedy algorithm

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(c) Clustered greedy algorithm

0 50 100
CPU cores

0

100

200

300

400

500

M
em

or
y

siz
e

(G
B)

(d) Proposed algorithm

Fig. 8: The host diversity comparison between GEODEPLOY and the state-of-the-art methods. Each host configuration is
represented as a circle in 2D space of CPU and memory values. The triangle shows the host configurations selected by the
respective methods.

500 1000 2000
Number of requests

0

3

6

9

12

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Random
Greedy
Clus.Greedy
Proposed

(a) For text data

500 1000 2000
Number of requests

0

3

6

9

12

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

ec
)

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Random
Greedy
Clus. Greedy
Proposed

(b) For image data

Fig. 9: Average response time obtained by executing the
methods for the given data. Timeout represents the requests
are not responded. Black bars on the top represents the
standard deviation.

500 1000 2000
Number of requests

0.0

2.5

5.0

7.5

10.0

12.5

Re
sp

on
se

 ti
m

e
(s

ec
)

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Random
Greedy
Clus.Greedy
Proposed

(a) For text data

500 1000 2000
Number of requests

0.0

2.5

5.0

7.5

10.0

12.5

Re
sp

on
se

 ti
m

e
(s

ec
)

Ti
m

eo
ut

Ti
m

eo
ut

Ti
m

eo
ut

Random
Greedy
Clus.Greedy
Proposed

(b) For image data

Fig. 10: Figure comparing the average, 95th and 99th per-
centile response time for the given data. Lower, middle and
upper lines of the box represent the average, 95th percentile
and 99th percentile of the response time respectively. Time-
out represents the requests are not responded.

the Greedy approach, results tend to timeout in all cases as
the host sizes are very small and are not able to handle even
500 requests. Fig. 10a also compares the average value with
the 95th and 99th percentile values. It shows that for lower
numbers of requests (e.g., 500 requests), the high percentile
response time (95th and 99th) values are close to the average
value. For the case of a high request size (e.g., 2000), the high
percentile response time deviates from the average value.

A similar trend is observed for the best solution obtained
for the image data as shown in Fig. 9b and Fig. 10b. In gen-
eral, the proposed solution offers a lower response time, i.e.,
2.1× and 1.3× less, compared to Random and Clus.Greedy
respectively.

400 800 1200 1600 2000
No. of Hosts

0

10

20

30

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
ec

)

P = 3
P = 6
P = 9

Fig. 11: Total execution time obtained by varying the num-
ber of hosts and replicas for GWA. P represents the problem
size with number of GWA replicas

7.4 Scalability test

It is necessary for our proposed approach to scale with
an increasing number of hosts and replicas of GWA com-
ponents (represented as problem size). We evaluated the
scalability of our proposed approach by varying the number
of replicas for the GWA’s web server which is represented
as Problem Size (P). The three GWA cases are a) Problem
Size P = 3, b) Problem Size P = 6 and c) Problem Size
P = 9. The number of cloud providers is set to five. We
increase the number of hosts varying from 200 to 2000. We
also set the number of datacenter geo-locations to be 12
so that a valid solution is always generated. It’s important
to emphasize that these values are selected independently
from the Cloud providers’ offered locations and are exclu-
sively utilised for the purpose of scalability assessment. To
maintain consistency, we increased the budget for each case
such that Budget

ProblemSize = 50 in every case.

Fig. 11 depicts the result obtained. The figure clearly
shows that the total execution time does not significantly
increase when increasing the number of host configurations
for any case. The maximum increase is visualised for P
= 3 with a value of 6% as compared to the average value.
The figure also shows that the execution time increases
with the increase in the problem size. With the increased
problem size, the algorithm complexity increases as firstly
it needs to search more elements, secondly, for each new
element, the validity is tested and finally, the fitness function
is computed. However, the total execution time does not
increase exponentially with the increasing problem size.

12

8 DISCUSSION

The experiment results demonstrate broad applicability
across various Geo-Distributed Web Application (GWA)
scenarios, specifically evaluating the performance of leading
cloud providers such as AWS, Azure, and Google Cloud.
Our methodology is particularly well-suited for scenarios
utilising the pay-as-you-go pricing model, enabling efficient
optimisation of resource utilisation and cost management.
However, it is important to note that our approach may not
be suitable for other pricing models, such as spot pricing.
Additionally, while our results are based on a comprehen-
sive test GWA, it is essential to recognise that outcomes
may vary depending on the specific characteristics and
requirements of individual GWA types.

Flexible execution. Since the cloud environment is dynamic,
to analyse the exact performance variations, benchmark
execution needs to be performed for longer durations,
however, this is very costly. [12] used a flexible execution
that schedules the benchmark for longer durations while
actually executing for very short time periods thus covering
the long-term variation in a defined budget. Developing
similar techniques for GEODEPLOY’s execution plan under
the defined budget is part of our future work plan.

Large-scale execution. Conducting experiments on a large-
scale system provides invaluable insights into the be-
haviours and performance of our proposed framework for
GWAs. Leveraging large-scale GWA benchmarks, such as
the Online Boutique5, one can aim to adapt and enhance
these benchmarks to align with our proposed approach.
By utilising such benchmarks in our experiments, we seek
to simulate realistic and diverse workload conditions rep-
resentative of real-world GWA deployments, enabling us
to comprehensively evaluate the efficacy and scalability of
our framework in handling varying demands and workload
patterns. Also, we plan to extend our framework to include
cloud service providers such as IBM, Alibaba, and Digi-
talOcean, thereby expanding the scope of our experiments
to assess the quality of solutions obtained across multiple
cloud environments.

Variable pricing models. One of our objectives is to advance
the development of GEODEPLOY frameworks to accom-
modate the evolving spectrum of cloud pricing models,
including reserved instances, spot instances, and emerging
alternatives, and facilitate efficient resource management in
GWA benchmarking. Modelling various types of cloud pric-
ing models for GWA is challenging due to several factors.
Firstly, the dynamic nature of spot pricing introduces un-
predictability, as prices fluctuate based on real-time supply
and demand, making cost estimation and budget manage-
ment complex. It can also be terminated by the provider
with a little notice. Additionally, the upfront commitment
required by reserved instances necessitates accurate long-
term resource forecasting, which is difficult and can result
in either underutilisation or overprovisioning of resources.
Moreover, the geographical distribution of applications
adds another layer of complexity, as different regions may
have varying pricing structures, leading to inconsistencies
in budget allocation strategies. The requirement to maintain

5. https://github.com/GoogleCloudPlatform/microservices-demo

performance and reliability despite these dynamic pricing
fluctuations is crucial. Therefore, GEODEPLOY will need
new capabilities to track spot and reserved instances in real
time. This requires designing algorithms that interact with
cloud provider APIs to dynamically update GEODEPLOY
cost values. Additionally, GEODEPLOY will need to dy-
namically adjust benchmarking decisions to utilize cheaper
configurations as prices change frequently.

9 CONCLUSION

We consider the problem of finding a suitable deployment
option for a given GWA in a multi-cloud environment. We
suggest that in order to find the most suitable deployment
solution, it is necessary to increase the diversity of hosts while
maintaining the dependency of GWA components for evalua-
tion. We designed GEODEPLOY, a novel GWA deployment
orchestrator that incorporates a variety of novel heuristics
for the problem at hand. We implemented GEODEPLOY
with Amazon AWS, Microsoft Azure and Google cloud
platforms, though it can be easily extended to other cloud
providers. Experimental results confirm that GEODEPLOY
outperforms baseline methods. Our proposed approach can
generate up to 85% more solutions with 16 times better
budget utilisation. The real-cloud evaluation also shows that
with the proposed approach there is a better chance to find
a suitable deployment solution, providing a response time
that is half the response time of other baseline methods.

REFERENCES

[1] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and reg-
ulatory constraints,” in 12th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 15), 2015, pp. 323–336.

[2] Y. Yuan, D. Ma, Z. Wen, Y. Ma, G. Wang, and L. Chen, “Efficient
graph query processing over geo-distributed datacenters,” in Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2020, pp. 619–628.

[3] J. P. Albrecht, “How the gdpr will change the world,” Eur. Data
Prot. L. Rev., vol. 2, p. 287, 2016.

[4] P. Voigt and A. Von dem Bussche, “The eu general data protec-
tion regulation (gdpr),” A Practical Guide, 1st Ed., Cham: Springer
International Publishing, 2017.

[5] O. Almurshed, O. Rana, Y. Li, R. Ranjan, D. N. Jha, P. Patel, P. Ja-
yaraman, and S. Dustdar, “A fault-tolerant workflow composition
and deployment automation iot framework in a multicloud edge
environment,” IEEE Internet Computing, vol. 26, no. 04, pp. 45–52,
2022.

[6] H. Wang, H. Shen, Z. Li, and S. Tian, “Geocol: A geo-distributed
cloud storage system with low cost and latency using reinforce-
ment learning,” in 2021 IEEE 41st International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE, 2021, pp. 149–159.

[7] L. Luo, G. Zhao, H. Xu, Z. Yu, and L. Xie, “Achieving cost
optimization for tenant task placement in geo-distributed clouds,”
IEEE/ACM Transactions on Networking, 2023.

[8] R. Viswanathan, G. Ananthanarayanan, and A. Akella,
“{CLARINET}: Wan-aware optimization for analytics queries,”
in 12th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), 2016, pp. 435–450.

[9] E. Cecchet, V. Udayabhanu, T. Wood, and P. Shenoy, “Benchlab:
an open testbed for realistic benchmarking of web applications,”
in Proceedings of the 2nd USENIX conference on Web application
development. USENIX Association, 2011, pp. 4–4.

[10] J. Scheuner, J. Cito, P. Leitner, and H. Gall, “Cloud workbench:
Benchmarking iaas providers based on infrastructure-as-code,” in
Proceedings of the 24th International Conference on World Wide Web,
2015, pp. 239–242.

13

[11] D. N. Jha, M. Nee, Z. Wen, A. Zomaya, and R. Ranjan, “Smartdbo:
smart docker benchmarking orchestrator for web-application,” in
The World Wide Web Conference, 2019, pp. 3555–3559.

[12] D. N. Jha, Z. Wen, Y. Li, M. Nee, M. Koutny, and R. Ranjan, “A cost-
efficient multi-cloud orchestrator for benchmarking containerized
web-applications,” in International Conference on Web Information
Systems Engineering. Springer, 2019, pp. 407–423.

[13] X. Tang, W. Cao, H. Tang, T. Deng, J. Mei, Y. Liu, C. Shi, M. Xia,
and Z. Zeng, “Cost-efficient workflow scheduling algorithm for
applications with deadline constraint on heterogeneous clouds,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 9,
pp. 2079–2092, 2021.

[14] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee
Software, vol. 33, no. 3, pp. 94–100, 2016.

[15] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng, and R. Ran-
jan, “A taxonomy and survey of cloud resource orchestration
techniques,” ACM Computing Surveys, vol. 50, no. 2, p. 26, 2017.

[16] A. Detti, L. Funari, and L. Petrucci, “µbench: an open-source fac-
tory of benchmark microservice applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 34, no. 3, pp. 968–980, 2023.

[17] M. Straesser, J. Mathiasch, A. Bauer, and S. Kounev, “A sys-
tematic approach for benchmarking of container orchestration
frameworks,” in Proceedings of the 2023 ACM/SPEC International
Conference on Performance Engineering, 2023, pp. 187–198.

[18] C. Davatz, C. Inzinger, J. Scheuner, and P. Leitner, “An approach
and case study of cloud instance type selection for multi-tier web
applications,” in 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. IEEE, 2017, pp. 534–543.

[19] M. B. Chhetri, S. Chichin, Q. B. Vo, and R. Kowalczyk, “Smart
cloudbench—a framework for evaluating cloud infrastructure per-
formance,” Information Systems Frontiers, vol. 18, no. 3, pp. 413–428,
2016.

[20] G. Kousiouris and D. Kyriazis, “Enabling containerized, paramet-
ric and distributed database deployment and benchmarking as a
service,” in Companion of the ACM/SPEC International Conference on
Performance Engineering, 2021, pp. 77–80.

[21] G. Yan and J. Li, “Towards latency awareness for content delivery
network caching,” in 2022 USENIX Annual Technical Conference
(USENIX ATC 22), 2022, pp. 789–804.

[22] Z. Song, K. Chen, N. Sarda, D. Altınbüken, E. Brevdo, J. Coleman,
X. Ju, P. Jurczyk, R. Schooler, and R. Gummadi, “{HALP}: Heuris-
tic aided learned preference eviction policy for {YouTube} content
delivery network,” in 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), 2023, pp. 1149–1163.

[23] “Akamai: Content delivery solutions (cdn),” https://www.
akamai.com/solutions/content-delivery-network, accessed: 2023-
01-20.

[24] “Amazon cloudfront,” https://www.amazonaws.cn/en/
cloudfront/, accessed: 2023-01-20.

[25] J. Ru, Y. Yang, J. Grundy, J. Keung, and L. Hao, “A systematic
review of scheduling approaches on multi-tenancy cloud plat-
forms,” Information and Software Technology, p. 106478, 2020.

[26] W. Wang, M. Tornatore, Y. Zhao, H. Chen, Y. Li, A. Gupta, J. Zhang,
and B. Mukherjee, “Infrastructure-efficient virtual-machine place-
ment and workload assignment in cooperative edge-cloud com-
puting over backhaul networks,” IEEE Transactions on Cloud Com-
puting, 2021.

[27] I. Attiya, M. Abd Elaziz, L. Abualigah, T. N. Nguyen, and
A. A. Abd El-Latif, “An improved hybrid swarm intelligence for
scheduling iot application tasks in the cloud,” IEEE Transactions on
Industrial Informatics, 2022.

[28] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal op-
erator placement for distributed stream processing applications,”
in Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, 2016, pp. 69–80.

[29] D. N. Jha, P. Michalák, Z. Wen, R. Ranjan, and P. Watson, “Mul-
tiobjective deployment of data analysis operations in heteroge-
neous iot infrastructure,” IEEE Transactions on Industrial Informat-
ics, vol. 16, no. 11, pp. 7014–7024, 2019.

[30] Y. Huang, Y. Shi, Z. Zhong, Y. Feng, J. Cheng, J. Li, H. Fan,
C. Li, T. Guan, and J. Zhou, “Yugong: geo-distributed data and job
placement at scale,” Proceedings of the VLDB Endowment, vol. 12,
no. 12, pp. 2155–2169, 2019.

[31] Z. Wen, T. Lin, R. Yang, S. Ji, R. Ranjan, A. Romanovsky, C. Lin,
and J. Xu, “Ga-par: Dependable microservice orchestration frame-
work for geo-distributed clouds,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 1, pp. 129–143, 2019.

[32] A. Marchese and O. Tomarchio, “Application and infrastructure-
aware orchestration in the cloud-to-edge continuum,” in 2023
IEEE 16th International Conference on Cloud Computing (CLOUD).
IEEE, 2023, pp. 262–271.

[33] S. Yang, L. Jiao, R. Yahyapour, and J. Cao, “Online orchestration of
collaborative caching for multi-bitrate videos in edge computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 12,
pp. 4207–4220, 2022.

[34] S. Pallewatta, V. Kostakos, and R. Buyya, “Microfog: A framework
for scalable placement of microservices-based iot applications in
federated fog environments,” Journal of Systems and Software, vol.
209, p. 111910, 2024.

[35] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of ICNN’95-International Conference on Neural Networks,
vol. 4. IEEE, 1995, pp. 1942–1948.

[36] A. Song, W.-N. Chen, X. Luo, Z.-H. Zhan, and J. Zhang, “Schedul-
ing workflows with composite tasks: A nested particle swarm
optimization approach,” IEEE Transactions on Services Computing,
vol. 15, no. 2, pp. 1074–1088, 2020.

[37] H. Han, X. Bai, Y. Hou, and J. Qiao, “Multitask particle swarm
optimization with heterogeneous domain adaptation,” IEEE Trans-
actions on Evolutionary Computation, vol. 28, no. 1, pp. 178–192,
2024.

[38] D. Bratton and J. Kennedy, “Defining a standard for particle
swarm optimization,” in 2007 IEEE swarm intelligence symposium.
IEEE, 2007, pp. 120–127.

[39] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Sil-
verman, and A. Y. Wu, “An efficient k-means clustering algorithm:
Analysis and implementation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[40] M. A. Masud, J. Z. Huang, C. Wei, J. Wang, and I. Khan, “I-nice:
A new approach for identifying the number of clusters and initial
cluster centres,” Information Sciences, vol. 466, pp. 129–151, 2018.

[41] S. Sahoo, B. Sahoo, and A. K. Turuk, “A learning automata-
based scheduling for deadline sensitive task in the cloud,” IEEE
Transactions on Services Computing, 2019.

[42] Y. Han, D. Guo, W. Cai, X. Wang, and V. Leung, “Virtual machine
placement optimization in mobile cloud gaming through qoe-
oriented resource competition,” IEEE transactions on cloud comput-
ing, 2020.

Devki Nandan Jha is currently a Lecturer at
Newcastle University, Newcastle Upon Tyne, UK.
He is also a visiting researcher at the Oxford
e-Research Centre, University of Oxford. Previ-
ously, he was a Research Associate with Oxford
e-Research Centre, University of Oxford, Oxford
and CyberHive Ltd., Newbury, UK. He has a PhD
in Computer Science from Newcastle University,
Newcastle Upon Tyne, UK. His research inter-
ests include cloud computing, internet of things,
trust and security, and machine learning.

Yinhao Li is a Lecturer in the School of Comput-
ing at Newcastle University, United Kingdom. He
has a PhD in computer science from Newcastle
University, United Kingdom. His research inter-
ests include cloud computing, edge computing
and internet of Things. He previously received
his MSc in Computer Science from the China
University of Geoscience.

14

Zhenyu Wen (Member, IEEE) received the MSc
and PhD degrees in Computer Science from
Newcastle University, Newcastle upon Tyne,
United Kingdom, in 2011 and 2016, respec-
tively. He is currently a Postdoc Researcher
with the School of Computing, Newcastle Uni-
versity, United Kingdom. His current research
interests include IoT, crowd sources, AI system,
and cloud computing. For his contributions to
the area of scalable data management for the
Internet of Things, he was awarded the the IEEE

TCSC Award for Excellence in Scalable Computing (Early Career Re-
searchers) in 2020.

Graham Morgan works in the field of distributed
systems and created Game Lab at Newcas-
tle University. Game Lab is a research and
teaching laboratory that works with the video
games industry on optimised resource manage-
ment, streamed/networked gaming and real-time
graphical simulations. Members of the lab regu-
larly work on many of the top selling global video
games. His work has won best paper awards in
leading IEEE and ACM conferences and he has
published in leading IEEE and ACM journals.

Prem Prakash Jayaraman works in the area
of distributed systems in particular Internet of
Things (IoT), Cloud and Mobile Computing. He
has published over 70 papers including 28 jour-
nal papers (Transactions on Cloud Computing,
Elsevier Computational Science, Transactions
on Large-Scale Data- and Knowledge-Centred
Systems, IEEE Journal on Selected Areas in
Communications, The Scientific World Journal)
in the related area of his research.

Maciej Koutny is a Professor of Computing Sci-
ence in the School of Computing at Newcas-
tle University, United Kingdom. His research in-
terests centre on the theory of distributed and
concurrent systems, including both theoretical
aspects of their semantics and application of
formal techniques to the modelling, synthesis
and verification of such systems. He is the chair
of the Steering Committee of the International
Conferences on Application and Theory of Petri
Nets and Concurrency, and an editor-in-chief of

the LNCS Transactions on Petri Nets and Other Models of Concurrency.
He is an Adjunct Professor at McMaster University, Canada, and in 2011
he held the Pascal Chair at Leiden University, The Netherlands.

Omer F. Rana received the B.S. degree in in-
formation systems engineering from the Imperial
College of Science, Technology and Medicine,
London, United Kingdom, the M.S. degree in mi-
croelectronics systems design from the Univer-
sity of Southampton, Southampton, United King-
dom, and the Ph.D. degree in neural comput-
ing and parallel architectures from the Imperial
College of Science, Technology and Medicine.
He is a Professor of performance engineering
with Cardiff University, Cardiff, United Kingdom.

His current research interests include problem solving environments for
computational science and commercial computing, data analysis and
management for large-scale computing, and scalability in high perfor-
mance agent systems.

Rajiv Ranjan is a Professor of Computing Sci-
ence in the School of Computing at Newcas-
tle University, United Kingdom. Before mov-
ing to Newcastle University, he was Julius Fel-
low (2013-2015), Senior Research Scientist and
Project Leader in the Digital Productivity and
Services Flagship of Commonwealth Scientific
and Industrial Research Organization (CSIRO
C Australian Government’s Premier Research
Agency). Prior to that he was a Senior Research
Associate (Lecturer level B) in the School of

Computer Science and Engineering, University of New South Wales
(UNSW). Professor Ranjan has a PhD (2009) from the Department
of Computer Science and Software Engineering at the University of
Melbourne.

