
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 1

Edge-Cloud Collaborative Streaming Video
Analytics with Multi-agent Deep Reinforcement

Learning
Bin Qian, Yubo Xuan, Di Wu, Zhenyu Wen*, Renyu Yang, Shibo He, Jiming Chen, and Rajiv Ranjan

Abstract—Streaming video analytics focuses on the real-time
analysis of streaming video data from multiple resources, such
as security cameras, and IoT devices with video capabilities.
It involves applications of various techniques to extract valu-
able information from live video streams. Edge computing and
cloud computing facilitate video stream analytics by utilizing
computation resources across both ends, enabling both high
accuracy and low latency. However, video streaming behaviours
are dynamic and constantly evolving across the edge and the
cloud. The network conditions, computing resources, and video
content can change rapidly, making it crucial to continuously
adjust the analytics methods to provide accurate results. Previous
works both based on deep neural networks (DNNs) or heuristic
algorithms learn a suitable deployment plan for streaming video
analytics applications from historical data or synthetic data and
therefore are not able to capture the dynamics. Hence, we propose
reinforcement learning-based methods that can adapt to ongoing
changes in video streaming behaviours. To ensure the scalability
of video analytics in distributed environments, we implement
OSMOTICGATE2, a distributed streaming video analytics system
that features optimized processing pipelines and multi-agent RL-
based controllers for fast adapting the system configurations
across the edge and the cloud. Experiments on a real testbed
show that our method outperforms baselines, assuring real-time
video analysis and high accuracy in dynamic and distributed
environments.

Index Terms—real-time video analytics, distributed system,
multiagent deep reinforcement learning, edge cloud collaboration.

I. INTRODUCTION

V IDEO analytic is of utmost importance in a range of
computer vision applications, including video surveil-

lance [1], augmented reality, and autonomous driving.
Presently, Deep Neural Networks (DNNs) serve as the founda-
tional technology for cutting-edge video analytic algorithms,
ensuring exceptional precision for the end users. Nevertheless,
the deployment of DNN models for video analytics in real-
world settings presents numerous obstacles. These models
are highly computationally demanding, featuring hundreds of
layers, which leads to significant inference latency. Moreover,
the sheer magnitude of streaming video data gives rise to
apprehensions regarding the transmission of raw data to the

Bin Qian and Rajiv Ranjan are with School of Computing, Newcastle
University, NE4 5TG, UK; Zhenyu Wen* (corresponding author), Yubo Xuan
are with Zhejiang University of Technology, 310023, China; Di Wu is with
University of St Andrews, KY16 9AJ, UK; Renyu Yang is with School of
Software, Beihang University, 100191, China; Shibo He is with Zhejiang
University, 310058, China; Jiming Chen is with Zhejiang University and
Hangzhou Dianzi University, 310018, China.

cloud for inference due to the exorbitant costs associated with
bandwidth and the ensuing insufferable delays in transmission.

One promising means to tackle bandwidth expenses and
data transmission delays in video analytic applications is
deploying DNN models on edge nodes situated in close prox-
imity to users. These edge nodes can swiftly receive streaming
videos from such end devices as cameras or mobile phones
with minimized delays. However, they inevitably fall short in
processing capabilities and become overwhelmed especially
during peak times with non-negligible delays. Hence, video
analytics systems imperatively require elaborate considerations
of both edge and cloud resources for optimal performance
guarantee in overloaded situations.

There are many existing studies on video analytics pipelines
in the continuum of edge and cloud computing. For instance,
A2 [2] and EdgeAdaptor [3] delved into the choice of distinct
DNN models to optimize delay and accuracy. DeepDeci-
sion [4], FastVA [5], and Osmoticgate [6] investigated new
offloading mechanisms between the edge and the cloud to fine-
tune video analytics setups. They primarily take into account
video preprocessing and model selection on the edge side
to strike a balance between inference accuracy and delay.
Reducto [7], and ClodSeg [8] employed frame filtering and
resolution downsizing techniques to minimize communication
costs during video transmission while preserving accuracy.
However, these approaches can hardly adapt to dynamic en-
vironments where the fluctuation of available computing and
communication resources is the norm rather than the exception
across distributed edge nodes.

When it comes to optimizing video analytics pipelines
in a highly distributed and dynamic environment, two main
challenges remain unsettled: i) It is impractical to scale up
the system due to the large configuration space in distributed
systems. System states and configurations will drastically
increase with the increment of the device number, and it
is time-consuming for a centralized controller to search for
an optimal configuration that maximizes the system resource
usage across the edge and the cloud. For example, Chicago
police analyze 30,000 camera streams in real time [9], and
making decisions in a centralized manner is impossible. Thus
the decentralized controlling system is imperative in such
a distributed system. ii) Achieving a self-configuring plan
for both cloud and edge nodes is challenging. In an edge-
cloud setting, every agent, whether cloud or edge, strives to
optimize their resource usage, which can impact the entire
system’s performance. For instance, if the network bandwidth

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 2

…Edge K

…Edge 2

…

…
…

…

…n 4 2

…m 3 1

Video Chunks

Configurations

Cloud Server

Decoder

Local Agent

Edge 1

OSMOTICGATE2 Client K

Decoder

Message Forwarding Module

Agent replicaSystem Stats

OSMOTICGATE2 Server

RL TrainerSys Monitor
…RL Agent K

RL Agent 1Edge Monitor

Inference Result

Local Stats

Agent Updates

System Stats

Parallel Encoder
1

2
3

m
4

n

… …

Concurrent Listener

Agent Updates

Fig. 1: RL-based Edge-Cloud Collaborative Video Analytics in OSMOTICGATE2. The streaming videos are encoded in the
edge nodes and then processed on both the edge and the cloud. Our OSMOTICGATE2 agents control the edge behaviors with
various configurations. The two modules are communicated via a message forwarding module across the edge and the cloud.

is sufficient, each edge node may be more inclined to offload
more data to the cloud, which may saturate the cloud and
reduce the performance of the entire system.

To address the aforementioned challenges, we present OS-
MOTICGATE2, a distributed orchestration system for optimiz-
ing video analytics across the edge and the cloud. In our
system, multiple edge devices work collaboratively and choose
the appropriate configurations to maximize system Quality of
Service (QoS) performance. To improve the system scalability,
we deploy on each edge node a controller for generating video
analytics configurations, based on local status only. Addition-
ally, we have developed a mechanism grounded in multi-agent
reinforcement learning, which utilizes the Centralized Training
and Decentralized Execution (CTDE) approach. This strategy
allows all agents to engage in collaborative learning within
the OSMOTICGATE2 server. The resulting OSMOTICGATE2
offers notable advantages, including exceptional scalability,
adaptability, and efficiency, all achieved through a carefully
optimized system-algorithm co-design.

Experiments on a real testbed with edge-cloud collaboration
validate the system’s effectiveness in enabling real-time and
accurate video analytics. The paper’s main contributions are
summarized as follows:

• Design OSMOTICGATE2, an edge-cloud collaborative
video analytics system in which the edge nodes and the
cloud server can collaborate for video encoding and video
analytics.

• Design an online multi-agent reinforcement learning al-
gorithm (MAPPO) for orchestrating the system configu-
rations within the systems. The agents of multiple edge
nodes collaboratively learn the optimal policy by sharing
their information to maximize their respective rewards.

• We evaluate the performance the proposed algorithm with
real-world datasets and testbeds. Our method can achieve
the best performance in terms of rewards, inference

accuracy, as well as the target system latency.

II. SYSTEM OVERVIEW

An overview of the proposed streaming video analytics
architecture OSMOTICGATE2 is depicted in Fig. 1, where a
large number of edge devices work collaboratively with the
cloud server to perform video analytics jobs on streaming
video generated from end devices. The streaming video is first
encoded into small chunks and then processed locally on edge
devices, with all results aggregated on the cloud server in the
end. When the edge device is unable to process all the video
streams in real time, a proportion of the video chunks are
transmitted to the cloud for processing as well.

The extra video transmission overhead for cloud computing
raises challenges on balancing the communication and com-
putation resources in edge-cloud collaborative analytics. As
compared to edge computing, cloud computing incurs extra
communication overhead but benefits lower processing latency.
The balance between the communication and computation is
further complicated when the system scales with more edge
devices in the system. Thus, an adaptive mechanism that
learns the system dynamics is necessary in consideration of
the system scalability. OSMOTICGATE2 develops a novel
mechanism capable of adaptively generating system config-
urations to improve the system QoS metrics, i.e., accuracy
and latency. It is composed of three major components: the
video analytics modules, the multi-agent controllers as well as
the message-forwarding modules. The three components are
modularized and communicated via the message-forwarding
modules, featuring seamless “monitoring - updating” across
the edge-cloud computing paradigm, enabling the smooth
running of the OSMOTICGATE2. In general, OSMOTICGATE2
has three main design considerations:

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 3

Offload rate

Bitrate

Resolution

Model

Local State 1

Local State k

Local State 2

Local State 1

Predicted Value

Local Inference
Queue Size

Bandwidth

Transmission
Queue Size

Previous Actions
at time t-1

FC Layer

Tanh

Sigm
oid

FC Layer

Tanh

Actor Network

Sample

M
ultivariate N

orm
al

Action
variance

Action Mean

DNN Network

FC Layer

Tanh

FC Layer

FC Layer

Tanh

DNN Network

Actions at time t

Critic Network

….

Cloud Queue
Size

Fig. 2: RL Agent architecture

TABLE I: Notation

Notation Description
t Current time step t.
K The total number of edge devices.
Ek Edge device k, k ∈K.

S The cloud server.
rtk Video resolution of edge device k at time step t.
btk Video bitrate of edge device k at time step t.
mt

k Inference model candidate of edge device k at time step t.
µt
k The offloading ratio for edge device k at time step t.

QItk The size of local inference queue for edge device k at time step t.
QT t

k The size of transmission queue for offloading at time step t.
Qt

S The size of inference queue for server s at time step t.
Bt

k The network bandwidth of edge device k at time step t.
At

k The action for edge device k at time step t.
acctk The average accuracy from edge device k at time steps t.
ltk The inference latency of edge device k at time steps t.

ltargetk The latency target of edge device k.
Ot

k The local state of edge device k at time step t.
Gt The global state of the server S at time step t.
Rt

k The reward of edge device k at time step t.
lthres The latency threshold in reward function
F The reward penalty when latency exceeds threshold lthres

M Maximum training episode
T Maximum steps in one episode

Adaptability: We design multi-agent RL-based controllers
for generating configurations and updating controllers based
on local and global system status.

Scalability: We implement centralized training and de-
centralized execution (CTDE) strategies for the controllers,
alleviating the problems of generating configurations from
high-dimension search spaces, especially when there are many
edge devices in the system.

Efficiency: We implement on-device acceleration tech-
niques on both computation and communication for video
processing across the edge and the cloud server.

III. MULTI-AGENT RL-BASED CONTROLLERS

We consider a classic real-time video analytics application,
as depicted in Fig. 1. This application comprises multiple edge
devices denoted as Ek, for k ∈ {1, 2, ...,K}, and a cloud
server referred to as S. Each Ek is responsible for receiving
video streams and performing video analytics jobs in real
time. Before the encoded video streams are input into the
deep learning models for video analytics, they are placed in
task queues, where they await decoding into image frames
at both endpoints. Then an appropriate model is selected to

meet the quality of service (QoS) requirements specific to the
application. All the outcomes generated are then consolidated
and sent to the cloud monitor, alongside other system status
information.

For N chunks of video streams generated from Ek, the
overall average processing latency ltk averages over two com-
ponents: 1). Edge processing latency edge processing pipeline
includes four components: the video encoding latency, the
waiting time in the queue, the video decoding latency, and
the inference latency. 2). Cloud processing latency cloud pro-
cessing places extra system overhead. During cloud inference,
except aforementioned latency, one extra latency comes from
the transmission latency between the edge and the cloud. The
notation table is shown in Table I.

A. Optimization Objective

Throughout the whole T running time within the system,
we consider two optimization objectives: the average system
processing latency and the average inference accuracy. Assume
the average inference accuracy during one time interval ∆t is
acctk, our optimization objective is formulated as follows:

maximize
At

k

1

T

T∑
t=1

acctk

subject to At
k = {rtk, btk,mt

k, µ
t
k};

|ltk − ltargetk | ≤ ϵ, ∀t ∈ T

(1)

For each Ek, we aim to maximize the average inference
accuracy during the system running time T , while ensuring the
average processing latency is close to a preset latency thresh-
old ltargetk . We set a slack variable ϵ such that the small latency
variance |ltk − ltargetk | is acceptable during the application
production. Subject to different QoS metrics of the real-time
stream processing systems, ltargetk can be variably adjusted as
well for each edge device. The generated configurations for
video processing include the video bitrate btk, frame resolution
rtk, and the choice of model mt

k used for video analytics.
Additionally, the smart agent must make decisions about the
offloading rate µt

k, representing the proportion of stream data
to be transferred from device k to the server S.

The key problem for the RL agent lies in figuring out the
optimal value, denoted as At

k, for Ek at every time step, with
the goal of enhancing the precision of system predictions. The
difficulty lies in factoring in dynamic system limitations, like
computational resources and network capacity, while being

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 4

contextually aware. The objective is to strike the right balance
between ensuring stable system response times and achieving
the highest level of accuracy by making informed choices
regarding video analytics configurations.

Based on the system model and the optimization objective
as represented in Equation 1, we elaborate on the intricate
blueprints of the fundamental elements in the reinforcement
learning (RL) agent, i.e., the architecture of the RL agent, the
RL state, the RL action, the reward function. In addition, we
also demonstrate how to train the RL agent in the system.

B. Architecture of RL agents

Actor-critic framework: Figure. 2 illustrates the architec-
ture of RL agents in our system. We adopt an architecture
of actor-critic paradigm where multiple actor networks are
deployed on each edge device Ek for outputting the optimal
policy. Following the design in [10], each edge device k has
its own pair of actor and critic network on the central server S.
The advantage of this design is that each edge device Ek can
focus on optimizing its own policy while sharing the learning
from local trails through a critic network on the cloud. We
use the Proximal Policy Optimization (PPO) [11] as the actor-
critic RL algorithm in this paper and denote the architecture
of PPO used as the multiple agents PPO (MAPPO).

The actor network π is responsible for learning the agent’s
policy. It maps agent observations O to the mean and standard
deviation of a Multivariate Gaussian Distribution, from which
an action is sampled, in continuous action spaces. The actor
network maximizes the expected cumulative reward over time
by adjusting its network parameters in a way that leads
to better actions in various states, ultimately improving the
agent’s performance. In this work, the input of the actor
network is the local state of each Ek, and the output is
probability distributions of 4 actions. They are later cast to
the system configurations in the environment. The architecture
of the actor network includes a 2-layer DNN network with
a sigmoid activation function and a hyper-parameter action
variance.

We sample the actions via a multivariate normal distribution
with the action mean generated from the DNN network
and the action variance. There have been many techniques
for enabling efficient model exploration during training, as
reflected in [12]. In this paper, we employ a parameterized
exploration technique for action sampling modules in agent
actors. Specifically, the distribution variance exponentially
decreases along with different training episodes, i.e., standard
deviation std = 0.5 ∗ 0.96episode. As compared to exploration
techniques such as extra entropy loss in optimization objective,
the benefit of such mechanism is enabling fast training of the
algorithm, which is especially important in real-world systems.

The critic network, on the other hand, estimates the value
of being in a particular state or taking a particular action in
a given state. It takes states and actions as input and outputs
a value, which represents the expected cumulative reward that
can be obtained from that state-action pair. By comparing the
estimated values with the actual rewards, the agent can update

its policy network to maximize the expected rewards. In this
work, the input of the critic network is an embedding layer that
concatenates all local states and the cloud queue size. After
performing feedforwarding with a two-layer DNN network,
the output of the critic network is the predicted value given
the global state.

C. RL States and Actions

The system state reflects the working status within the
system at every time step t. Concretely, we distinguish two
states, i.e., the local state (Ot

k) on each edge device Ek and
the global state (Gt) on the server S. On the edge side, each
device Ek takes the local state Ot

k as the input at time step t
to output the optimal action At

k. The global state Gt is used
as the input of the global critic network at time step t.

The local state Ot
k for each Ek includes the size of the

transmission queue QT t
k, the size of the local inference queue

QItk, the average network bandwidth Bt
k between Ek and the

cloud S, and the agent’s action at the previous time step t−1.
At time slot t, we denote the local state of each agent k as
Ot

k = {QItk, QT t
k, B

t
k, A

t
k}

On the cloud server S, the global state Gt includes all
local states and the size of cloud queue Qt

S from all edge
devices. The global critic network takes the global state and
estimates the value of state-action value function, i.e., the
expected cumulative reward an RL agent can achieve following
its policy. The global state Gt at time step t is defined as
Gt = {Qt

S , O
t
1, O

t
2, ..., O

t
k}. where k is the number of all edge

devices.
The RL action generated by each edge device k should

consider the critical decisions with the system model, i.e., the
resolution of generated images rtk, the bitrate for encoding
and decoding the video stream btk, the candidates of different
models mt

k, and the offloading ratio of the generated images
µt
k. The RL agent action for each edge device k at time step

t can be expressed as At
k = {rtk, btk,mt

k, µ
t
k}. Specifically,

we design three decision variables rtk, btk, and mt
k as discrete

variables. The resolution choices rtk are three-folds: 240P,
360P, and 540P. The video bitrate btk has three choices as
well: 500kbps, 1000kbps, and 3000kbps. The model choice on
the edge side mt

k includes three model variants of YOLOv8,
named YOLOv8-m, YOLOv8-s, YOLOv8-n. While on the
cloud side, we use YOLOv8-m only, with the best accuracy
and largeset inference latency as well. The data offloading ratio
µt
k is designed as a continuous variable from [0,1] to concisely

control the proportion of data transferred to the cloud. During
system implementation, µt

k portions of the video chunks are
offloaded to the cloud while the rest are processed locally. The
combination of the chosen actions can cover a wide range of
accuracy and latency requirements that are suited for different
types of QoS requirements, i.e., highest accuracy or moderated
accuracy with acceptable system latency.

D. Reward Function

The reward function guides the optimization direction and
is the core of the RL agent. Based on our system optimization

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 5

Algorithm 1: RL agent training in OSMOTICGATE2

1 Input: the number of the edge device K, maximum
episode M, maximum time step T

2 Output: the actor of each device k, [πk,∀k ∈ K]
3 for each episode m ∈ M do
4 τ1, ..., τK = [] empty list
5 for each device Ek, k ∈ K in parallel do
6 Initialize parameters θk for the actor πk, and

ϕk for the critic Vk

7 for each time step t ∈ T do
8 1. observe the agent’s local state Ot

k and
global state Gt

k

9 2. Get actions At
k = πk(O

t
k; θ

t
k)

10 3. execute the action Ak(t) in environment
11 4. observe the agent’s local state Ot+1

k and
global state Gt+1

k

12 5. get the reward with Rt
k with Eq. 2

13 6. τk+ = [At
k, O

t
k, G

t
k, R

t
k, O

t+1
k , Gt+1

k]
14 end
15 Update θk via Adam
16 Update ϕk via Adam
17 end
18 end
19 return RL agents

goal in Equation 1, for each time step t, we formulate the
reward Rt

k as follows:

Rt
k =

{
acctk − ω ∗ |ltk − ltargetk | ltk ≤ lthres

−ω ∗ F − (ltk − lthres) otherwise
(2)

where acctk is the average accuracy at time step t, and
ω ∗ |ltk − ltargetk | is the latency constraint with a positive ω
balancing the weights between the accuracy and latency. When
the latency ltk exceeds the pre-defined threshold lthres, we
place another linear penalty term −ω∗F−(ltk− lthres), where
with F a positive number to penalize the action that leads to
high latency. ω weighting term is included to ensure that the
rewards under normal conditions are not overshadowed. By
doing so, the agent is motivated to complete the task as close
to the desired time as possible while maximizing accuracy.

E. Centralized Training and Decentralized Execution (CTDE)
in OSMOTICGATE2

In our paper, the number of edge devices, the number of
bitrates, resolutions, model choices and the offloading rates
all could increase the complexity of the decision-making.
In MAPPO, we have designed centralized training and de-
centralized deployment strategy for alleviating the scalability
problems. Specifically, by using centralized training, the agents
can learn and coordinate their actions based on a global view
of the environment. This allows them to capture complex
interactions and dependencies more effectively during the
learning process. In our paper, for each configuration we select
three values that could reveal performance variations across
them. Increasing the number of configurations will not raise

scalability issues. Since the agents operate in a decentralized
manner, making decisions based on their local observations
and learned policies. Each agent acts independently and does
not require access to the full state or information of other
agents. In our system, we implement in OSMOTICGATE2
server the RL trainer and deploy in OSMOTICGATE2 client
the local agents.

Algorithm 1 illustrates how we train the actor and critic
network of each RL agent. First of all, we initialize the
environment for each device, and initialize the parameters θk
of the actor πk, and the parameters ϕk of the critic Vk. When
the RL agents are ready, both the server and the edge nodes
start receiving the video streams. During the training process,
each edge node is allocated a buffer list τk. At time step t, the
agent observes the local state Ot

k and the global state Gt
k, then

the action is generated At
k = πk(O

t
k; θ

t
k). The At

k is executed
in the system until time step t+1. At this time step, the new
local state Ot+1

k , global state Gt+1
k , as well as the reward Rt

k

are observed in the cloud server. All these stats are collected
in the system as one buffer for updating the model parameters.
The agents continue to interact with the system until the end
of the episode where t == T . After one episode, for each
pair of actor θk and ϕk, all collected samples in the trajectory
are fed to the objective function of the respective actor and
critic networks, and the network parameters are updated with
ADAM optimizers.

IV. IMPLEMENTATION DETAILS

A. Video Analytics Module

The video analytics module is built upon the work in Os-
moticgate [6] while we extend the framework with several par-
allel techniques to speed up the video processing operations.
The processing process in OSMOTICGATE2 includes video
encoding, inference, and video transmission across the edge
and the cloud server. We illustrate in the following subsections
the techniques employed to speed up the processing within the
system.

1) Parallel Video Encoder: When the video streams are
fed into the edge devices, they are encoded within the system
with the configuration command from the OSMOTICGATE2
clients. The encoding process entails compressing the video
streams to target bitrate and resolutions, in order to accelerate
the inference speed. As encoding computation is highly CPU-
intensive, we utilize the multi-core architecture and implement
multi-process encoding for accelerating the encoding process
in the first place. Specifically, the video streams are split into
small chunks and encoded concurrently in different processes.
The results are then pushed to the local processing queue for
local inference or transmission queue to be processed by the
cloud server.

2) Inference Engine: We implement inference engines for
both the edge and cloud devices for making predictions on the
encoded video chunks. On the edge devices, models of various
configurations are loaded into the memory. OSMOTICGATE2
clients decide the appropriate model to be used for processing
the current chunks. On the cloud server, only a large model
with the best performance is deployed for making predictions.

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 6

All received video chunks are decoded into batches of frames
before being loaded into the models for inference.

3) Concurrent Listener: When transmitting the raw video
contents from the edge to the cloud, the packet re-assembly
may take much time and it is easy for the socket to get stuck
at this time. This is especially true when multiple clients are
transmitting to the cloud simultaneously, where the clients
have to wait for the other clients to send all the content.

Thus, we design a socket pool with each containing a worker
process listening to connections and receiving the packets.
The concurrent processes are continuously monitoring a whole
socket pool, re-assembling the received packets. All received
packets are sent to the queue, then the cloud cluster for further
processing.

B. Multi-agent Controllers

The core of the OSMOTICGATE2 is the coordination of
components for alleviating the computation and communica-
tion bottlenecks across the edge and cloud servers. In order to
do so, we deploy on each edge device an OSMOTICGATE2
client and a global OSMOTICGATE2 server on the cloud.
Each OSMOTICGATE2 client contains an agent and generates
system configurations for controlling the local processing
operation in real-time. The configurations are generated based
on local system stats collected via the Edge Monitor and the
previously generated configurations.

Specifically, the System Monitor is deployed on the OS-
MOTICGATE2 server collecting all local stats. A RL Trainer
is deployed on the cloud server along with all local agents.
Via collected information from the System Monitor, the RL
Trainer is able to jointly update all agents, such to achieve
the goal of optimal system performance.

C. Message-forwarding Module

In order to realize the seamless control between the video
analytics module and the multi-agent controllers mentioned
above, we implement the Message-forwarding module as a
middleware to exchange information between these two mod-
ules across the edge and the cloud.

The module is based on RabbitMQ where we initiate two
queues: 1) System Stats queue for forwarding the inference
results from all devices as well as the local/global stats. All
stats from both the edge devices and cloud server are then
aggregated in the system monitor to assist the agent training
process 2) Agent Replica queue for forwarding and deploying
the updated agents to the edge side. OSMOTICGATE2 server
contains all agent replicas within the system. Once the agents
are updated via the RL trainer, the newly generated models
are sent to the target device, ensuring all agents are up-to-
date, conforming to the system states.

V. PERFORMANCE EVALUATION

A. Experimental Setting

Testbed: We use NVIDIA Jetson Xavier NX (with
ARMv8.2 CPU and 8GB RAM) as the edge node and the
cloud server is a bare metal Ubuntu machine, with 8 cores

TABLE II: The average inference accuracy and processing
latency for each video chunk with different models, including
the encoding, decoding latency. This does not include the
queue waiting time, and the transmission latency.

Edge Accuracy Latency(s)
Model(YOLOv8) m s n m s n

540P 0.844 0.794 0.746 2.117 1.646 1.025
360P 0.817 0.763 0.721 1.512 1.306 0.851
240P 0.762 0.731 0.653 1.289 1.174 0.754

Cloud Accuracy Latency(s)
Bitrate(kbps) 3000 1000 500 3000 1000 500

540P 0.846 0.814 0.741 0.707 0.677 0.668
360P 0.842 0.818 0.775 0.569 0.548 0.542
240P 0.815 0.797 0.767 0.483 0.473 0.467

(Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz), GeForce
RTX3090 graphics card and 48 GB RAM. The cloud operating
system is Ubuntu 20.04.

Dataset: We use road traffic video datasets from UA-
DETRAC [13] to construct our video analytics system, which
contains 10 hours of video captured at 24 different locations at
Beijing and Tianjin in China 1. The videos are recorded at 30
frames per second (fps), with a resolution of 960×540 pixels.
We subtract from the simple and medium category a total of
120s of video data to construct our training dataset.

In order to simulate real-world bandwidth connection, we
use public traces from oboe [14] with TC to control the
bandwidth between the edge and the cloud server. We sample
a sub-trace from all the traces and repeatedly emulate the
bandwidth throughout the whole training process. In particular,
during the training of each episode, the network condition
changes every 20 seconds, and the duration of each time step
t is set to 10 seconds.

System Configuration: We consider object detection when
analyzing the video data in UA-DETRAC and deploy yolo [15]
models for detection. We use the same architectures as
in [15] and deploy on the edge device YOLOv8-n, YOLOv8-
s, YOLOv8-m models with 3.2M, 11.2M, 25.9M parameters
respectively. As cloud has enough computation power, we
only deploy the YOLOv8-m model with highest accuracy. The
models are pre-trained on COCO dataset fine-tuned on UA-
DETRAC subset later. During the fine-tuning process, we start
with a learning rate of 0.01 and a batchsize of 64 and train
for 300 epochs, and then adjust the learning rate to 0.001 and
continue training 300 epochs to get the final model.

We show in Table II the running performance of differ-
ent models in the system. Due to the different processing
pipelines, the inference accuracy of different edge models
are correlated with the video frame resolution as encoding to
smaller bitrate is unnecessary. Whereas the cloud performance
is influenced by both the resolution and video stream bitrate.
The system configuration space is further complicated by the
offloading rate as well. In the reward function, F is set to 1
and lthres is set to 1.5 in all experiments.

Baseline methods: We assess the performance of our
approach by contrasting it with the following baseline.

1https://detrac-db.rit.albany.edu/

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 7

0 20 40 60 80 100
Episode

1.5

1.0

0.5

0.0

0.5

R
ew

ar
d

=0.5
=1

=2
=4

(a) Reward Curve

0 20 40 60 80 100
Episode

0.74

0.76

0.78

0.80

A
cc

ur
ac

y

=0.5
=1

=2
=4

(b) Accuracy Curve

0 20 40 60 80 100
Episode

1.0

1.4

1.8

2.2

La
te

nc
y(

s)

=0.5
=1

=2
=4

(c) Latency Curve

Fig. 3: Convergence and Performance of OSMOTICGATE2 under Different Penalty Weights

- 1 . 5

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0
��

Re
wa

rd

 M A P P O O S M O T I C G A T E E d g e - M e d i a n F a s t V A D e e p D e c i s i o n C l o u d - M i n E d g e - M i n

- 1 . 5
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0

Re
wa

rd

(a) Average reward

0 . 6

0 . 7

0 . 8

0 . 9
Ac

cur
acy

(b) Average inference accuracy

1 . 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0

La
ten

cy(
s)

(c) Average latency

Fig. 4: Performance of OSMOTICGATE2 and baseline with Penalty Weights of 0.5

1) OSMOTICGATE [6]: the cloud server models the system
and collects global information, using a two-stage gradient-
based algorithm to provide offloading strategies for each edge
node.

2) FastVA [5]: considers making the most use of network
transmission to offload the video chunks to the cloud.

3) Edge-Median: edge nodes choose the smallest offload
rate, the medium resolution, the medium bitrate, and the
medium model.

4) DeepDecision [4]: addresses an optimization challenge
wherein video processing occurs selectively either at the edge
or the cloud side, contingent upon the prevailing system
throughput within each time interval.

5) Cloud-Min: edge nodes choose the largest offload rate,
and choose the smallest resolution and the lowest bitrate.

6) Edge-Min: edge nodes choose the smallest offload rate,
resolution, lowest bitrate, and the smallest model.

B. Convergence and Performance under Different Penalty
Weights

We analyze the convergence of the proposed OSMOTIC-
GATE2 under different penalty weights ω, i.e., 0.5, 1, 2, 4.
We set ltarget as 1 in this experiment. As seen in Fig. 3,
all 4 sets of experiments can converge to a stable policy.
The convergence can be fast at around 40 episodes, which
validates the effectiveness of the proposed MAPPO algorithm.
In Fig. 3a, the overall reward decreases when ω gets larger,
with around 0.77, 0.63, 0.48, and 0.23 reward for 4 penalty
weights respectively. This is mainly due to the larger penalty
incurred from the deviations of the latency target. However,
the reward does not fully reflect the system performance as it
combines both the latency and accuracy of the system.

From the accuracy curve and latency curve in Fig. 3b
and 3c, when the value of ω is set to 0.5, our algorithm
attains its highest accuracy of 0.79. This is primarily because
a smaller value of ω places greater emphasis on achieving
high accuracy. During the training process, the accuracy curve
gradually converges to a point and the latency is stable at the
end. As reflected in Fig. 3c, the convergence latency is around
1s, which satisfies the pre-defined ltarget. The training curve
reveals that our algorithm learns configurations that prioritize
meeting the latency target over maximizing accuracy.

C. Performance Comparison with Baselines

In this experiment, we compare the performance of the
proposed algorithm with several baselines. We set ω to be 0.5,
and lttarget to be 1. We report the average reward for different
methods in Fig. 4a and the detailed system performance in
Fig. 4b and 4c.

From Fig. 4a, we can see that MAPPO outperforms base-
lines in all experiments. OsmoticGate is the most competitive
baseline in the literature. However, as its primary goal was
to minimize system processing latency, OsmoticGate finally
achieves 0.88 latency and 0.76 accuracy, an inferior per-
formance as compared to us. FastVA achieves the highest
accuracy 0.815 and latency 4.67, as it tends to transmit as
many as possible video chunks to the cloud, but it leads
to cloud overload. Other simple heuristics such as Edge-
Median and Edge-Min all lead to worse performance in
our experiments. In conclusion, our OSMOTICGATE2 with
MAPPO method strictly conforms to the system performance
target, i.e., maximize accuracy while ensuring around 1.0 sys-
tem latency. OSMOTICGATE2 can ensure real-time streaming
video processing while maximizing the prediction accuracy.

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 8

The experimental results validate the superiority of the multi-
agent reinforcement learning in our OSMOTICGATE2.

VI. CONCLUSION

In this paper, we study the problem of real-time video
analytics across the edge and cloud environments. We pro-
pose OSMOTICGATE2 for orchestrating the configurations and
performing task offloading across the edge and the cloud.
In order to adapt to distributed and dynamic environments,
we introduce a sophisticated online multi-agent reinforcement
learning system crafted. Powered by the cutting-edge multi-
agent reinforcement learning algorithm MAPPO, all agents
are actively engaged in real-world environments, continually
learning from these interactions. This dynamic learning pro-
cess enables the system to optimize its performance effectively
in a changing environment. Through rigorous experimentation,
we show exceptional adaptability to varying system configu-
rations while maintaining stable runtime performance.

ACKNOWLEDGMENTS

This work was supported in part by National Key Re-
search and Development Program of China under Grant
2022YFE0196000; in part by China Postdoctoral Science
Foundation under Grant 2023M743403; in part by Zhejiang
Provincial Natural Science Foundation of Major Program
(Youth Original Project) under Grant LDQ24F020001; in part
by the Fundamental Research Funds for the Central Universi-
ties.

REFERENCES

[1] L. Zhang, J. Xu, Z. Lu, and L. Song, “Crossvision: Real-time on-camera
video analysis via common roi load balancing,” IEEE Transactions on
Mobile Computing, pp. 1–13, 2023.

[2] J. Jiang, Z. Luo, C. Hu, Z. He, Z. Wang, S. Xia, and C. Wu, “Joint
model and data adaptation for cloud inference serving,” in 2021 IEEE
Real-Time Systems Symposium (RTSS), 2021, pp. 279–289.

[3] K. Zhao, Z. Zhou, X. Chen, R. Zhou, X. Zhang et al., “Edgeadaptor: On-
line configuration adaption, model selection and resource provisioning
for edge dnn inference serving at scale,” IEEE Transactions on Mobile
Computing, vol. 22, no. 10, pp. 5870–5886, 2023.

[4] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018-IEEE conference on computer communications. IEEE, 2018, pp.
1421–1429.

[5] T. Tan and G. Cao, “Fastva: Deep learning video analytics through
edge processing and npu in mobile,” in IEEE INFOCOM 2020-IEEE
Conference on Computer Communications. IEEE, 2020, pp. 1947–
1956.

[6] B. Qian, Z. Wen, J. Tang, Y. Yuan, A. Y. Zomaya, and R. Ranjan,
“Osmoticgate: Adaptive edge-based real-time video analytics for the
internet of things,” IEEE Transactions on Computers, vol. 72, no. 4,
pp. 1178–1193, 2022.

[7] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang et al., “Reducto: On-camera
filtering for resource-efficient real-time video analytics,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication, 2020, p. 359–376.

[8] Y. Wang, W. Wang, J. Zhang, J. Jiang, and K. Chen, “Bridging the Edge-
Cloud barrier for real-time advanced vision analytics,” in 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[9] “Can 30,000 cameras help solve chicago’s crime problem?” https://www.
nytimes.com/2018/05/26/us/chicago-police-surveillance.html, accessed:
2023-10-31.

[10] C. Yu, A. Velu, E. Vinitsky, J. Gao et al., “The surprising effectiveness of
ppo in cooperative multi-agent games,” Advances in Neural Information
Processing Systems, vol. 35, pp. 24 611–24 624, 2022.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[12] P. Ladosz, L. Weng, M. Kim, and H. Oh, “Exploration in deep rein-
forcement learning: A survey,” Information Fusion, vol. 85, pp. 1–22,
2022.

[13] L. Wen, D. Du, Z. Cai, Z. Lei, M. Chang, H. Qi et al., “UA-DETRAC:
A new benchmark and protocol for multi-object detection and tracking,”
Computer Vision and Image Understanding, 2020.

[14] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett
et al., “Oboe: Auto-tuning video abr algorithms to network conditions,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018, pp. 44–58.

[15] “Yolov8,” https://github.com/ultralytics/ultralytics, accessed: 2024-03-
19.

BIOGRAPHIES

Bin Qian [Student Member, IEEE] (bin.qian0718@gmail.com) received the
MSc degree in data science from the University of Southampton, U.K, in
2018. He is currently working toward the PhD degree in computer science
from Newcastle University, Newcastle Upon Tyne, U.K. His research interests
include IoT, machine learning, task offloading.

Yubo Xuan (221122120292@zjut.edu.cn) is currently pursuing a master’s
degree in computer science and technology at the School of Computer Science
and Technology, Zhejiang University of Technology, Hangzhou, China. His
research interests include IoT, machine learning and Edge-Cloud collaboration
based on Machine Learning

Di Wu [Student Member, IEEE] (dw217@st-andrews.ac.uk) is currently
pursuing a PhD degree in computer science at University of St Andrews,
UK. He received a B.S. degree in Information System and Information
Management from Northeast Forestry University, China in 2015, and an M.S.
degree in Data Science from University of Southampton, UK in 2018. His
major interests are in the areas of federated learning, distributed machine
learning, edge computing, model compression, and Internet of Things.

Zhenyu Wen [Senior Member, IEEE] (wenluke427@gmail.com) is currently
a Tenure-Tracked Professor with the Institute of Cyberspace Security, Zhejiang
University of Technology. His current research interests include IoT, crowd
sources, AI system, and cloud computing. For his contributions to the area
of scalable data management for the Internet of Things, he was awarded the
the IEEE TCSC Award for Excellence in Scalable Computing (Early Career
Researchers) in 2020.

Renyu Yang [Member, IEEE] (renyuyang@buaa.edu.cn) is currently an
Associate Professor in the School of Software, Beihang University, China. He
was with the University of Leeds UK, Alibaba Group China and Edgetic Ltd.
UK, having industrial experience in building large-scale resource scheduling
systems. He is a recipient of Alan Turing Post-Doctoral Enrichment Award,
2022. His research interests include parallel and distributed computing, and
deep learning systems and applications. He is a member of IEEE.

Shibo He [Senior Member, IEEE] (s18he@zju.edu.cn) received the Ph.D. de-
gree in control science and engineering from Zhejiang University, Hangzhou,
China, in 2012. He is currently a Professor with Zhejiang University. He
was an Associate Research Scientist from March 2014 to May 2014, and a
Postdoctoral Scholar from May 2012 to February 2014, with Arizona State
University, Tempe, AZ, USA. From November 2010 to November 2011,
he was a Visiting Scholar with the University of Waterloo, Waterloo, ON,
Canada. His research interests include Internet of Things, crowdsensing, big
data analysis, etc.

Jiming Chen [Fellow, IEEE] (cjm@zju.edu.cn) received the B.Sc. and
Ph.D. degrees in control science and engineering from Zhejiang University,
Hangzhou, China, in 2000 and 2005, respectively. He is currently a Professor
with the College of Control Science and Engineering, and the Deputy Director
of the State Key Laboratory of Industrial Control Technology, Zhejiang
University. His research interests include the Internet of Things, sensor
networks, networked control, and control system security

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 9

Rajiv Ranjan [Senior Member, IEEE] (rranjans@gmail.com) is an
Australian-British computer scientist, of Indian origin, known for his research
in Distributed Systems (Cloud Computing, Big Data, and the Internet of
Things). He is University Chair Professor for the Internet of Things research
in the School of Computing of Newcastle University, United Kingdom. He
is the director of Networked and Ubiquitous Systems Engineering (NUSE)
Group, jointly with Dr. Graham Morgan, in the School of Computing. He is
a fellow of Academia Europaea and the Asia-Pacific Artificial Intelligence
Association. He is also the Founding Director of the International Centre
(UK-Australia) on the Internet of Energy (IoE), funded by EPSRC.

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2024.3398724

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on June 29,2024 at 01:51:08 UTC from IEEE Xplore. Restrictions apply.

