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Abstract—In object goal navigation tasks, the robot’s un-
derstanding of semantic relationships in the environment is a
key factor in its ability to localize target objects. Previously,
learning-based methods trained robots using 3D scene datasets
to learn semantic relationships. However, these approaches per-
form poorly in new environments with unfamiliar semantic
contexts. In this paper, we propose ChatNav which leverages
the powerful knowledge summarizing and reasoning capabilities
of a Large Language Model (LLM) for zero-shot inference of
explicit semantic relationships. These relationships are further
integrated into the navigation system for efficient localization
of target objects. ChatNav employs a spatial object clustering
algorithm to collect semantic clues and designs common-sense-
based prompts for interacting with LLM. It then uses a gravity-
repulsion model to convert inference results into heuristic factors
for robust navigation decision-making. Our approach requires no
additional training and can consistently obtain accurate semantic
relationships from LLM, making it well-suited for navigating
unknown environments. Experimental results demonstrate the
outstanding navigation performance of our proposed method on
the Gibson and HM3D datasets, surpassing the current state-of-
the-art object goal navigation methods.

Index Terms—Object goal navigation, LLM, Object clustering,
prompt, gravity-repulsion model.

I. INTRODUCTION

IN the task of visual object-goal navigation [1–5], the
robot is required to navigate swiftly and accurately in an

unknown environment to locate the target object effectively.
In this context, the dynamic modeling and understanding of
semantic relationships in the environment are crucial factors
influencing the decision-making capabilities of the robot [6–8].

If the robot could perceive and reason about semantic
information from the objective world, akin to human-like rea-
soning, it would greatly enhance its navigation performance.
Approaches such as end-to-end reinforcement learning (RL)
[9–12], modular RL [7, 13, 14], and supervised learning [15]
have successfully integrated semantic relationships into navi-
gation systems, thereby augmenting navigation performance.
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Fig. 1. The differences between humans and robots in searching for target
items in unknown environments. When searching for a TV in an unknown
setting, the robot’s lack of knowledge about the coffee table-TV relationship
forces it to speculate based on a chair and plant, often resulting in navigation
errors. Humans, with a more nuanced understanding of semantic connections,
would more accurately infer the presence of a TV in a living room setting.

However, these learning-based methods are limited by the
training data and can only learn the semantic relationships
provided by the training data.

In unfamiliar settings where novel semantic relationships are
present, robots that learn these relationships through machine
learning methods still fall short in exploration skills compared
to humans. Take the scenario depicted in Fig. 1 for exam-
ple: the robot, not having previously learned the semantic
relationship between a coffee table and a TV, struggles to
ascertain the presence of a TV in a room. In contrast, humans
have a rich understanding of diverse semantic relationships,
enabling them to engage in more advanced semantic reasoning.
For instance, a human might recognize a space as a living
room and, based on this recognition, infer the likely presence
of a TV. To further enhance the robot’s ability to leverage
semantic relationships in unknown environments, we explore
utilizing the powerful knowledge summarization and reasoning
capabilities of large language models (LLMs) for the zero-
shot acquisition of explicit spatial layout relationships between
objects.

Challenges. Ensuring the stable and sensible inference of
explicit object layout relationships by generative LLM and
their effective integration into the navigation system still
faces several challenges. 1) Providing accurate information
to the LLM: In unknown environments, the lack of scene
priors makes it challenging to integrate semantic information
into accurate and sufficient semantic cues, which are crucial
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Fig. 2. Integrating LLM into Object Goal Navigation Systems. Accurate and ample semantic cues are vital for LLM to infer valid semantic relationships
(up left). We propose a real-time spatial clustering algorithm for incomplete semantic maps, ensuring the collection of precise cues for LLM. The stable
inference of reasonable semantic relationships by LLM is crucial for the effectiveness of the pipeline. We transform the context of the problem into a domain
where LLM excels, designing prompts to guide LLM in making continuous and logical inferences of semantic relationships (bottom left). The adaptability of
explicit semantic relationships to the navigation system affects navigation performance. We introduce a gravitational-repulsive model to transform semantic
relationships into factors influencing frontier selection, rather than directly using inference results for navigation decisions.

prerequisites for LLM to infer ideal semantic relationships
(See Fig. 2 up left). 2) Prompting the LLM for stable and
rational reasoning: In a single navigation task, the robot
must repeatedly extract decision information from the LLM,
with each decision determining the exploration direction.
However, guiding robot navigation proves to be a novel and
challenging task for LLM, potentially leading to irrational
reasoning outcomes. As a consequence, designing a prompt
being capable of consistently steering LLM towards rational
inferences poses a significant challenge (See Fig. 2 bottom
left). 3) Integrating explicit semantic relationships with the
navigation system: The explicit semantic layout relationships
cannot be directly used for navigation decisions, and their
unreasonable integration into the navigation system hinders
the effectiveness of semantic guidance (See Fig. 2 right).

We introduce ”ChatNav”, a novel pipeline designed for
object goal navigation, integrating a large LLM. This innova-
tive approach facilitates stable and logical zero-shot inference
of object semantic relationships, seamlessly integrating these
insights into the navigation system. As a result, ChatNav
achieves both efficient and precise navigation, significantly
enhancing its operational capabilities.

Firstly, we design an object spatial clustering algorithm
suitable for incomplete semantic maps1 to collect accurate
and comprehensive semantic cues for LLM (See Fig. 2, top
left). Next, we design a new framework to transform the robot
navigation commands to the common scene dialogue as the
prompts for LLMs (See Fig. 2 bottom left). This is because
the performance of LLMs is more accurate and stable in

1The semantic map is a 2D top-down map storing observed object locations.

reasoning tasks that involve common-sense knowledge rather
than unfamiliar new tasks such as robot navigation. Finally,
we incorporate a frontier exploration algorithm [16] as a
foundational component of our navigation system in ChatNav.
This algorithm converts the inference outcomes into influential
factors for selecting frontiers, utilizing a gravity-repulsion
model as illustrated in Fig. 2 (right panel). This integration
not only enhances the robustness of the navigation system but
also ensures its stability. Collectively, these three pivotal and
interdependent components constitute the foundational frame-
work of the ChatNav pipeline, with each component serving
an indispensable role in enhancing its overall functionality and
operational efficiency.

Our contributions can be summarized as follows:
• We propose an approach leveraging a generative LLM for

stable and rational zero-shot inference of object semantic
relationships. Such inference utilizes an object spatial
clustering algorithm suitable for incomplete maps to
collect semantic cues for LLM and employs a common-
sense task inference prompt template for interaction with
LLM.

• To integrate the explicit reasoning results into the navi-
gation system, we design a frontier exploration algorithm
based on the gravity-repulsion model to transform these
inference results into factors influencing the frontier se-
lection, which ensures both flexibility and robustness in
robot decision-making.

• We apply the proposed ChatNav pipeline to the Habitat
simulation platform [17] and test it on the datasets of
Gibson [18] and HM3D [19]. The experimental results
indicate that, compared to the state-of-the-art (SOTA)
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object goal navigation methods, ChatNav achieves com-
prehensive superiority in accuracy and efficiency without
requiring additional training.

II. RELATED WORK

A. Large language model applications

In recent years, various large language models such as
BERT [20], LLAMA [21], and ChatGPT [22, 23] have rapidly
advanced, demonstrating zero-shot reasoning capabilities and
the ability to perform various complex tasks. Particularly,
since the emergence of ChatGPT 3.5, its powerful knowledge
summarization, reasoning capabilities, contextual understand-
ing, and flexible prompt interaction have garnered widespread
attention from experts and scholars across various fields, who
have begun applying it in their respective research domains.
Dave et al. [24] conducted an analysis and summary of
ChatGPT’s applications in the field of medicine, highlighting
its potential in this domain. Ren et al. [25] utilized ChatGPT
to empower CLIP-based image classification tasks, aiming to
further improve image classification accuracy. Jin et al. [26]
applied the multimodal understanding capability of the GPT-
4 model to the field of artistic creation, achieving promising
results. Lu et al. [27] augmented ChatGPT with plug-and-play
modules to accomplish various compositional reasoning tasks.
Inspired by these works, we consider embedding ChatGPT
into navigation systems to leverage its zero-shot inference
capabilities for object spatial layout distribution reasoning,
thereby assisting in navigation decision-making.

B. Learning-based object goal navigation methods

There are primarily three categories of learning-based object
target navigation methods: end-to-end RL [5, 9–11], modular
RL [7, 13, 14], and supervised learning [15]. In the end-
to-end RL approaches, robots are trained to utilize semantic
information from observed images to select navigation actions.
Modular RL methods typically involve constructing a semantic
map to store historical semantic information [13], and RL is
used to train robots to select waypoints from the map, while
path planning and action selection are executed by low-level
planning algorithms. Supervised learning methods pre-train a
neural network to store semantic relationships between objects
and utilize these relationships for decision-making during nav-
igation. Although these methods have successfully integrated
semantic information into navigation systems and enhanced
the decision-making capabilities of robots, the limited se-
mantic relationships learned through data-driven approaches
severely restrict their generalization to new scenarios. Our
proposed pipeline leverages a comprehensive understanding of
semantic relationships through LLM, enabling the derivation
of semantic relationships for any object without the need for
additional training.

C. LLM-based object goal navigation method

Recently, there has been a growing interest in utilizing low-
lever language models to infer spatial semantic relationships
for assisting in navigation. L3MVN [28] constructs query

sentences using semantic information near map boundaries.
By employing the RoBERTa LLM [20], it obtains query
probabilities for each sentence as boundary scores and selects
the boundary with the highest score for exploration. Esc
[29] further develops two types of query sentences, namely
room-level and object-level queries. Through the Deberta v3
language model [30], it obtains object query probabilities and
room query probabilities. Ultimately, it makes a comprehen-
sive decision to select the exploration boundary. Both L3MVN
and Esc require obtaining query probabilities from LLM.
However, current large-scale generative language models (such
as ChatGPT series large language models [22, 23]) are only
accessible through API calls, making it challenging to obtain
query probabilities. Moreover, the large models they use
only employ simple query sentences as prompts, lacking the
ability to design structured prompts for interaction with LLM.
This structured prompt approach allows for a more precise
description of object layouts to adapt to navigation scenarios
[31–33].

Dhruv et al. [34] initiated research on creating structured
prompts to work with the ChatGPT 3.5 model. However, they
did not thoroughly explore the adequacy and precision of
the inferential clues given to the model, nor did they deeply
integrate the model’s inference outcomes with the navigation
system. These factors are vital for improving navigation using
large language models. The model needs accurate and ample
inferential clues to correctly deduce semantic relationships,
which is a key reason for using large language models.
Additionally, how well the inferred semantic relationships
mesh with the navigation system is critical for effectively
applying semantic information. We design three stages of
semantic relationship inference by LLM in navigation systems,
achieving high-quality performance with a short prompt.

III. OVERVIEW OF CHATNAV

Object Navigation. Given a robot equipped with RGB-
D observations O := (I,D) and odometry measurements
δp := (δx, δy, δθ), the goal is to enable it to navigate
quickly to a specified target object G in an unknown envi-
ronment. At each time step t, the robot executes an action
at ∈ {turn left, turn right,move forward, stop} based on
the current observations Ot := (It, Dt) and pose pt :=
p0 + δp0

+ δp1
+ δp2

+ ... + δpt−1
. Navigation is considered

complete when the robot reaches within a range of ds meters
from the target object G, and then the robot executes the stop
action.

Global and Local Policy. Following previous works [13, 15,
28], we construct the navigation system using global and local
policies. The global navigation policy sets a global goal point
Pi for the robot, while the local policy controls the robot to
execute a series of actions (at, at+1, ...) to move towards Pi.
The robot is guided to purposefully explore unknown regions
by repeatedly setting global goal points, enabling it to locate
target objects quickly.

To fully utilize semantic relationships in navigation
decision-making, we designed the ChatNav pipeline. After
each robot action, ChatNav collects observation data. At fixed
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Fig. 3. The framework of ChatNav. The sensors collect real-time pose and RGB-D data. The ChatNav pipeline utilizes this data to construct a semantic
map and formulate global target points based on the map. Specifically, we first employ a clustering algorithm on the incomplete map to obtain accurate and
comprehensive semantic cues. Then, we combine the semantic cues with common-sense knowledge to form a prompt for interaction with the LLM (or a
locally distilled model from online LLM), resulting in reasoning outcomes. Finally, these reasoning results are transformed into selection factors for exploration
frontiers through a gravity-repulsion model, ultimately leading to the acquisition of global target points.

intervals T , it uses an LLM to infer semantic relationships and
set global goal points Pi. For the local policy, we apply the
same deterministic method as in SemExp [13] to plan the path
and guide the robot to the global goal point.
The Pipeline of ChatNav. As shown in Fig. 3, the pipeline
consists of three parts: cues collection, LLM reasoning, and
goal point selection. Cues collection: At each time step,
ChatNav converts observation information into the semantic
map. When a new global goal point needs to be set, it conducts
semantic clustering on this map to identify various candidate
regions. Each region offers specific semantic cues, determined
by the types of objects present in them, as detailed in §IV.
LLM reasoning: ChatNav utilizes the semantic cues of the
candidate regions to interact with the LLM, thereby obtaining
the spatial relationship between these regions and the target
object. This process is further explained in §V. Goal point
selection: ChatNav constructs a gravity-repulsion model based
on the spatial relationships inferred by the LLM. This model is
then combined with a frontier exploration algorithm to select
global goal points, as detailed in §VI.

IV. CLUSTERING-BASED REGIONAL SEMANTIC CUE
GENERATION

In environments lacking prior map information, robots
struggle to integrate observed semantic information into effec-
tive cues, a prerequisite for LLM to infer reasonable semantic
relationships. We build a semantic map to store the semantic
information observed by the robot at each time step. When
setting a global goal point, we use a clustering algorithm to
transform the historical semantic information in the map into
semantic cues.
Semantic Map. The semantic map, denoted as mt, is an
M×M 2D matrix, containing accumulated observations from

time step 0 to t. Different numbers in mt(i, j) correspond to
different meanings: 1 and 2 correspond to explored areas and
obstacles, and other numbers correspond to different categories
of objects. At t = 0, the semantic map is initialized as a
zero matrix, with the robot placed at the center of the map,
oriented towards the x-axis. At each subsequent time step, the
robot updates the semantic map with the RGB-D observations
(It, Dt) obtained from its pose pt.

This update process is illustrated in Fig. 4. Firstly, the robot
uses a semantic segmentation network to label each pixel of
RGB image It as either a specific object category or back-
ground [35]. Then, the robot converts each pixel in the depth
map dt into a corresponding 3D point cloud and assigns the
category obtained from the semantic segmentation, forming a
semantic point cloud, PC(x, y, z, category). Finally, the robot
transforms the semantic point clouds into the semantic map
coordinate system, projects them downward, and updates the
semantic map mt.

To achieve the conversion mentioned above from the depth
map to the point clouds, we employ a classic geometric
transformation method, as described by Equation (1).

xy
z

 = d(x′, y′)

 1
fx

0 0

0 1
fy

0

0 0 1

x′ − w
2

y′ − h
2

1

 (1)

where (x′, y′) are the pixel coordinates, (w, h) are the dimen-
sions of the depth map, (x, y, z) are the corresponding point
cloud coordinates, d(x′, y′) is the depth at (x′, y′). fx and
fy are the known focal lengths of the camera. Similarly, we
use classical coordinate transformation and projection methods
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Fig. 4. Projection of Robot Observations onto the Semantic Map. At time t,
the robot captures observations with an RGB-D camera and integrates them
into the semantic map. First, a semantic segmentation network identifies a
couch in the RGB image. Next, the depth map is converted into 3D point
clouds with attached semantic information, forming semantic point clouds.
Finally, the point clouds are projected onto the semantic map using differential
projection. In the semantic map, the dashed area represents new content
from the current RGB-D observation, with 1 indicating the explored area,
2 representing the obstacle, and 3 denoting the couch.

[13] to map the semantic point clouds onto the semantic map.

[
X
Y

]
= Proj.

[
R3×3 t3×1

11×3 0

]
x
y
z
1


 (2)

where [X,Y ] represents the 2D coordinates on the map. R3×3

denotes the rotation matrix and t3×1 represents the translation
vector between the camera and map coordinate systems. R and
t are determined by factors such as the camera’s pitch angle,
height, and the robot’s pose.

Clustering Algorithm for Incomplete Map. Understanding
some objects in a room allows for better guessing of other
room characteristics. The more types of objects identified in
the room, the more precise these guesses are. Consequently,
we have created an algorithm for object spatial clustering.
This algorithm groups objects in the same region, giving the
LLM more precise and complete cues for semantic reasoning.
Different objects are considered to be in the same region
based on three basic conditions: 1) The objects are spatially
close to each other, such as the 2 couches in Fig. 5. A; 2)
no obstacles are separating the objects, unlike the couch and
plant in Fig. 5. B; 3) There is a known connecting passage
(explored area) between the objects, unlike the couch and chair
in Fig. 5. C. To ensure the clustering of objects consistently
satisfies these three constraints, we design a clustering strategy
based on object dilation. To satisfy condition 1), we perform
dilation on objects in the map, connecting nearby objects
into a single region to achieve clustering. To meet conditions
2) and 3), we perform the dilation in multiple small steps,
incrementally expanding the objects and blocking any trends
that cross obstacles and unexplored regions after each step.

couch

TV

chair
plant

toilet

obstacle
explored area A

B

C

SucClust

ObsLimit

UnknLimit

Fig. 5. A spatial object clustering algorithm suitable for incomplete maps.
In this incomplete semantic map, we use obstacle and explored regions as
clustering limitations to maximize object clustering under correct assumptions.
In the case of A, two nearby couches cluster successfully without these
constraints. In case B, obstacles between a couch and a plant prevent
clustering, treating them as separate regions. In case C, a large unexplored
area between a couch and a chair also leads to their separate regions.

Specifically, we first decompose the semantic map into
three distinct components: the explored map, the obstacle
map, and the object map. Then, we perform N iterations of
convolutional dilation using a small c× c kernel on the object
map. After each dilation operation, we apply the obstacle and
explored maps as masks to the dilated object map. These
masking operations can eliminate abnormal dilation clustering
that crosses obstacles and unknown regions. Finally, we obtain
multiple candidate regions that accurately encompass objects,
with these objects serving as the semantic cues for their respec-
tive regions. Taking Fig. 5 as an example, there exists semantic
information {table, chair, TV, couch, toilet, table, plant}.
After the clustering operation, we obtain region-cue pairs:
R1 = [toilet], R2 = [table, chair], R3 = [couch, TV ], R4 =
[table, plant].

In the dilation clustering process, the dilation steps N and
kernel size c × c are two critical parameters. The kernel
size should be small enough to avoid crossing obstacles
or unexplored regions, which could lead to objects from
different regions being incorrectly clustered. After selecting
an appropriate kernel size, the dilation steps N will determine
the extent of the dilation clustering. If N is too small, objects
in the same area cannot be adequately clustered. Conversely,
if N is too large, objects from different regions may be
incorrectly clustered. To select an appropriate N , we design
two metrics to evaluate the clustering performance, i.e., the
average clustering rate ACR and the average mis-clustering
rate AMCR. We experiment with the complete semantic
maps of Gibson training set scenes [18], testing the clustering
performance for different values of N . Before clustering,
each object is treated as an individual chunk. After dilation,
these chunks merge into larger and fewer chunks. The ACR
measures the reduction in the number of chunks before and
after N iterations of dilation clustering, while the AMCR
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Prompt Template            
Role definition: mover.
Tasks: moving packages.
Cues: Goal  object,
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Requirements: type, 
format, limitations.

Goal object: bed
Region-cues pairs:
Region 1: toilet 
Region 2: table, chair 
Region 3: couch, TV 
Region 4: chair, plant

Short Sentence Construction
This room contains a bed.
This room contains a toilet.
This room contains a table and a chair.
This room contains a couch and a TV.
This room contains a chair and a plant.

    
Pretrained

Bert
MLP

Classifier

data labeling support

Online
ChatGPT

Fig. 6. The usage modes of ChatNav in online and offline settings. In the
online mode, we integrate clustering results into common-sense prompts for
the ChatGPT model, enabling the LLM to derive reasoning outcomes. In the
offline mode, we transform the clustering outcomes into simple sentences,
extract sentence embeddings using a pre-trained RoBERTa-large model, and
classify them with an MLP classifier. The MLP is trained based on data
collected in the online mode.

represents the ratio of the abnormal chunk dilation area (such
as the overlapping area created when chunks extend from the
living room to the bedroom) to the total map area. Our goal is
to select a dilation step N that maximizes ACR and minimizes
AMCR. The formulas for calculating ACR and AMCR are
as follows:

ACR =
1

S

S∑
i=1

R(i)∑
j=1

1

R(i)

Corig.(i, j)− Cclus.(i, j)

Corig.(i, j)
(3)

Where S is the number of scenes, R(i) is the number of
regions in the ith scene, Cclus.(i, j) is the number of chunks
in the jth region of the ith scene after dilation clustering,
and Corig.(i, j) is the number of chunks in the corresponding
region before clustering.

AMCR =
1

S

S∑
i=1

Amis(i)

Hmap(i)×Wmap(i)
(4)

Where Amis(i) is the mis-clustering area in the ith scene, and
(Hmap(i),Wmap(i)) are the dimensions of the complete scene
map.

V. SEMANTIC REASONING WITH LLM
After obtaining the semantic cues of the candidate regions,

we construct prompts based on these cues and interact with
the ChatGPT model by calling the API online, as shown in the
online mode in Fig. 6, to determine the semantic relationship
between the target object and each region. Additionally, we
offer an offline reasoning solution for situations where there
is no network connection, as depicted in the offline mode in
Fig. 6.
Online Mode. In this mode, the design of the prompt is
crucial, directly determining the accuracy and stability of
ChatGPT’s semantic relationship reasoning during navigation.
Our prompt design leverages two key features of the ChatGPT.

First, ChatGPT is a general-purpose model trained on com-
mon interactions and articles, excelling at solving common-
sense problems but prone to hallucinations in specialized do-
mains [22, 23]. To address this, we switch from a professional

robot navigation task to a common-sense knowledge task.
Instead of asking the LLM to navigate as a robot, we ask it to
act as a mover, placing packages into rooms. Second, ChatGPT
generates content autoregressively based on the prompt, and
the completeness of the prompt description helps improve the
quality of the generated content. To this end, we organize the
prompt in a structured way, including the role, tasks, cues, and
requirements, to form a coherent narrative.

Specifically, as shown in the prompt template in Fig. 6 for
the online mode, we first create a commonsense context of
a mover distributing packages, where the packages represent
candidate or target regions, and their contents correspond to
semantic cues. Next, within this context, we direct the LLM
to predict the type of room in which each package should
be placed, thereby obtaining room-type labels of candidate
regions and target region. Finally, we add inference constraints
for LLM to improve the validity of LLM inference information
and develop a specific output format to facilitate the extraction
of valid information.

We pass this complete prompt to the ChatGPT model
through the API for inference, obtaining the types of can-
didates and target regions. By comparing the candidate region
types with the target region type, we categorize the candi-
date regions as target-related or target-unrelated. In Fig. 7,
we present practical examples of ChatGPT reasoning under
different types of prompts. In the commonsense context, the
model can accurately link the target object to each region
based on room types. However, under the professional prompt,
ChatGPT provides incorrect navigation guidance due to its
lack of expertise in robotic navigation tasks.

Additionally, to maintain system stability, we develop two
special handling prompts: abnormal handling prompt and
multi-target disambiguation prompt, as shown in Figure 8.
When ChatGPT’s response contains content or format anoma-
lies, we pass the abnormal handling prompt to ChatGPT,
instructing it to respond strictly according to the requirements.
When ChatGPT identifies multiple target-related regions, we
use the multi-target disambiguation prompt to further interact
with ChatGPT, asking it to determine the single target-related
region.

Offline Mode. When network conditions are poor or rapid
decision-making is required, incorporating spatial layout
knowledge into a local model becomes crucial. To achieve
this, we apply a distillation technique that combines the local
model with fine-tuning from ChatGPT, transferring ChatGPT’s
knowledge of object spatial layouts into the local model.
Specifically, we first place the robot randomly in two training
datasets—Gibson (25 scenes) and HM3D (146 scenes)—and
assign random destinations for it to navigate, collecting ex-
tensive object clustering data. This data collection simulates
real-world robot exploration. For each set of clustering data
(e.g., clus1, clus2, clus3...), we infer the room type of each
cluster (e.g., C1, C2, C3 ...) following the same method as
in the online mode shown in Fig. 6, thus generating a large
number of labeled clusters. Using the labeled data, we then
train the local model. As shown in the offline mode of Fig.
6, we follow this process: construct simple sentences for each
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A. Common sense prompt:  You are an experienced mover who is familiar with where each piece of furniture belongs in a house. One day, you are asked 
to deliver a batch of packages containing household items to a house that consists of a dining room, a living room, and a bedroom. You need to select a 
storage room for each package based on the layout of the furniture in the home (multiple packages can be stored in one room). In these packages, Please 
provide separate answers for each package’s storage room. Package 1 contains [toilet], package 2 contains [chair, table], package 3 contains [couch, TV], 
package 4 contains [table, plant], and package 5 contains [bed]. Please respond in the following JSON file format: {“package no”: num, “package items”: [], 
“target room”: room type}, In the JSON format mentioned above, num is the package number, fill in the items with the corresponding package number in 
[]; room type is the room type (Choose one type from the dining room, living room, or bedroom, and do not include additional room types such as 
bathroom or kitchen. You are only allowed to place the package in the three rooms mentioned earlier.)
Response of A: [{"package no": 1, "package items": ["toilet"], "target room": "bedroom"}, {"package no": 2, "package items": ["chair", "table"], "target 
room": "living room"}, {"package no": 3, "package items": ["couch", "TV"], "target room": "living room"}, {"package no": 4, "package items": ["table", 
"plant"], "target room": "dining room"}, {"package no": 5, "package items": ["bed"], "target room": "bedroom"}]
B. Professional prompt: You are a robot who is required to quickly explore an unknown environment to find a target item. One day, you are asked to find 
an item in an unknown environment with a household layout consisting of a dining room, living room, and bedroom. I will tell you what you see, and you 
should answer which region to go to find the item. Please first explain your reasoning, then provide a response in JSON format. The JSON format is as 
follows: {“target area no”: num, “area items”: []}. In the JSON format mentioned above, num is the package number, fill in the items with the 
corresponding package number in []; if there is no target area, reply [no] and return an empty JSON response. Below are a few examples: Example 1: 
{Information: You now see two areas. Area 1 has a couch; Area 2 has a bed; You need to find a toilet. Which area should you go to? Answer: I should go to 
Area [2], because there is a bed, likely near the bedroom, and toilets are usually found around bedrooms. Therefore, I will go to Area [2]. {“target area no”: 
2, “area items”: [bed]}}. Example 2: {Information: You see three areas. Area 1 has a couch, a TV; Area 2 has a chair and a table; Area 3 has a toilet; You need 
to find a plant. Which area should you go to? Answer: I should go to Area [2], because Area 2 has a chair and a table, which is likely near the dining room, 
and plants are usually found near dining rooms. Therefore, I will go to Area [2]. {“target area no”: 2, “area items”: [chair, table]}}. Example 3: {Information: 
You see two areas. Area 1 has a bed; Area 2 has a toilet; You need to find a potted plant. Which area should you go to? Answer: [no], because the given 
Area 1 is clearly near the bedroom, and Area 2 is likely near the bedroom as well. Potted plants are usually placed in the dining room. Therefore, I will 
explore a new area. {}}. When answering the reason, the type of room can only be living room, bedroom, or dining room. You are not allowed to infer any 
other types, such as bathroom or kitchen. Information: You see 4 areas. Area 1 has a toilet; Area 2 has a chair and a table; Area 3 has a couch and a TV; 
Area 4 has a plant and a chair. You need to find a bed. Which area should you go to?
Response of B: I should go to Area [3], because Area 3 has a couch and a TV, which are commonly found in the living room. Beds are typically located in 
the bedroom, and the living room is often adjacent to or near the bedroom in household layouts. Therefore, I will go to Area [3]. {"target area no": 3, "area 
items": [couch, TV]}

Fig. 7. Common sense prompt and professional prompt: In the common sense prompt, the LLM is asked to play the role of a mover, where the cues for
the candidate regions are represented as packages, and the LLM is required to infer the type of room each package should be moved to. In the professional
prompt, the LLM is asked to play the role of a robot and directly infer the most likely region for the target object based on the region-cue pairs. In the
above prompts, the text in red is replaced based on the actual target and regional clues. For example, with the target object being a bed and the region-cue
pairs being R1 = [toilet], R2 = [chair, table], R3 = [couch, TV ], and R4 = [plant, table], we construct prompts accordingly. The two prompts interact
with the ChatGPT model separately. From the responses, it is evident that, under common-sense conditions, the correct area classification can be obtained.
However, under the professional prompt, ChatGPT failed to infer the relationship between the toilet and the bedroom, leading to an incorrect answer.

cluster, obtain embeddings for these sentences using the pre-
trained RoBERTa-large model, and feed these embeddings into
a classifier to predict the local model’s labels (e.g., c1, c2,
c3 ...). We compare these predicted labels with those from
ChatGPT to compute the loss (e.g., l1, l2, l3 ...), where li =
Cross-entropy(one-hot(Ci) − ci), and update the classifier
network accordingly. Ultimately, we obtain a local object to
region type classifier.

VI. UTILIZATION OF SEMANTIC RELATIONSHIPS

Since LLM’s inference of candidate regions is not based
on the robot’s actual observations, directly using the inferred
target-related region as the navigation target area can result
in system crashes. Instead, these inferences should serve as
guidance for navigation decision-making. To achieve this, we
combine the inferred semantic relationships with exploration
boundaries for comprehensive decision-making. Specifically,
we first establish a gravity-repulsion model to compute the
semantic utility values at every position on the map. Then,
we utilize the traditional frontier exploration algorithm [16]
and cost-utility method [36] to obtain all frontiers and their
corresponding geometric utility values. Finally, we combine
semantic utility and geometric utility to identify semantic
frontiers, selecting the optimal semantic frontier as the next
exploration target.

Gravity-Repulsion Model. Target-unrelated regions exert the
repulsive force on the robot, preventing it from further explo-
ration in these regions, and encouraging the robot to explore
new, unknown areas instead. Meanwhile, the target-related
region exerts an attractive force on the robot, drawing it
deeper into exploring that region. However, the impact of
target-related and target-unrelated regions on the robot should
exhibit distinct characteristics. The repulsion should inhibit the
robot from exploring target-irrelevant areas and their imme-
diate vicinity, without affecting other exploration processes.
However, attraction should manifest in target-relevant areas
and their broader vicinity. Therefore, we design the repulsion
function and gravity function in the form of (5) and (6).

Vrepu(P,Ai) = a · e−α·(dist(P,Ai)+β) (5)

Vgrav(P,G) = k · dist(P,G) + b (6)

The (5) computes the repulsion force generated by target-
unrelated region Ai at point P , and dist(P,Ai) represents the
length of the shortest path from point P to region Ai. We
calculate this length using the classic Fast Marching Method
(FMM) [37]. β represents the truncation distance, a is the
magnitude parameter, and α is the distance scaling parameter.
The (6) calculates the attraction force generated by the target-
related region G at point P . dist(P,G) represents the length
of the shortest path from point P to the target-related region,
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A. Abnormal Handling Promp: Based on your response, we cannot extract 
the effective relationship between rooms and packages. Please adhere 
strictly to the format we provided earlier to ensure we can extract valid 
information. 
B. Multiple Target Disambiguation Prompt: You are an experienced mover 
who is familiar with where each piece of furniture belongs in a house. One 
day, you are asked to deliver a batch of packages containing household 
items to a house that consists of a dining room, a living room, and a 
bedroom. You need to select a storage room for each package based on 
the layout of the furniture in the home (multiple packages can be stored in 
one room). In these packages, Please provide separate answers for each 
package’s storage room. Package 1 contains [chair, TV], and package 2 
contains [couch, TV]. Please respond in the following JSON file format: 
{“package no”: num, “package items”: [], “target room”: room type}, In the 
JSON format mentioned above, num is the package number, fill in the 
items with the corresponding package number in [], and room type 
presents the type of room. Note: One of these two packages goes in the 
living room, the other in the different room.

Fig. 8. Abnormal handling prompt and multiple target disambiguation prompt.
When ChatNav detects an abnormal response, it sends the abnormal handling
prompt to the LLM, explaining the error and the inability to extract useful
information. If multiple target-related regions appear, ChatNav extracts the
region-cue pairs corresponding to all target-related areas and constructs the
multiple target disambiguation prompt to interact with the LLM, identifying
the unique target-related region. For example, if the target object is in the
living room and two target-related regions are inferred: R1 = chair, TV and
R2 = couch, TV, we will construct the prompt shown in the figure above and
further interact with the LLM.

k represents the correlation decay coefficient, and b serves as
the offset. To calculate the shortest path distance from a point
to a region, we first set up the regions and obstacles for the
FMM algorithm. The FMM algorithm spreads outwards from
the region’s boundary, changing direction when encountering
obstacles, until it covers the entire map. The arrival time at
each point estimates the shortest path distance.

Finally, we combine the gravity and repulsion forces to
calculate the field force, as shown in formula (7). NA rep-
resents the number of target-irrelevant regions, and flag is a
0-1 variable, only becoming 1 when a target-relevant region
is present.

V (P ) =

NA∑
i=1

Vrepu(P,Ai) + flag · Vgrav(P,G) (7)

Semantic Frontier. The frontier refers to regions on the
boundary between open space and unexplored space. By
moving to new frontiers, the robot can extend its map into
new territory until the entire environment has been explored
[16]. Traditional frontier-based exploration algorithms utilize
geometric information in the map to select frontiers, thereby
achieving rapid exploration of the entire environment. How-
ever, in object goal navigation tasks, the purpose of exploration
is to locate target objects, and the selection of frontiers
should be more targeted. Therefore, we combine the semantic
relationships inferred by LLM with the frontiers to form
semantic frontiers and select the center of the optimal semantic
frontier as the global target point. Specifically, it consists of
the following three steps:

1) Utilize obstacle maps and exploration maps to obtain
frontiers. Initially, we extract the boundaries of the exploration
map and perform dilation to connect adjacent boundaries.

geometry scoring semantic scoring combine scoring

Fig. 9. Gravity-Repulsion Field Affecting Frontier Utility: The left image
shows frontiers scored by geometric utility, with the robot selecting the
highest-scoring frontier at the red dot, opposite the target object (bed). We
use a gravity-repulsion field to obtain semantic scores for each map position
(middle). The right image combines these scores to select the frontier center
with the highest composite score as the global goal point, marked by the red
dot, located near the target object (bed).

Subsequently, we use the obstacle map to eliminate invalid
portions. Finally, we further filter out boundaries that are
too small for the robot to navigate through, resulting in the
exploration frontiers denoted as F = {f1, f2, f3...}.

2) Combine the gravity-repulsion field formed by seman-
tic relationships with the frontiers, resulting in semantic
frontiers. Each semantic frontier has three attributes: fi =
[Dist(fi, pose), N(fi), V (fi)], where Dist(fi, pose) is the
relative shortest path length from the frontier center to the
current pose, calculated with FMM, N(fi) is the pixel count
of the frontier, and V (fi) is the field force value exerted by
the gravity-repulsion field at the center of this frontier.

3) Reference the cost-utility method outlined in paper [36],
and augment it with semantic components. The utility value
for each frontier is calculated as shown in (8).

U(fi) =
N(fi)

CN
+ λ1

Dist(fi, pose)

CD
+ λ2

V (fi)

CV
(8)

where CN , CD, CF are scaling factors for pixel count, path
length, and field force values respectively, λ1 and λ2 are
used to adjust the relative importance of geometric distance
and semantic field force. Finally, the frontier with the highest
utility value is chosen as the target frontier, and its center is
chosen as the global target point P , as shown in the formula
(9).

fP = argmaxi{U(f1), U(f2)...U(fi)...} (9)

In Fig. 9, we illustrate the change in the robot’s frontiers
scoring before and after the influence of semantic components.
The semantic components assist the robot in avoiding unnec-
essary exploration, enabling a swift and accurate localization
of the target object.

VII. DISCUSSION

Computational Complexity Analysis. The ChatNav pipeline
consists of various components: traditional methods (e.g.,
object space clustering), neural networks (e.g., semantic seg-
mentation), and online API calls to LLM (e.g., interactions
with ChatGPT). Thus, we separately compute the computa-
tional complexity of ChatNav. Specifically, we use algorithm
complexity to evaluate traditional methods, average inference
time for neural networks, and average response time for
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TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS.

Executed at every step Executed at fixed intervals T

Semantic map update Clust. LLM reason. Goal point selec.

PC gene. Coord. tra. Sem. seg. — — Frontier. R-G mod.
O(n2) O(n2) 0.023s O(n2) 1.825s O(n2) O(n2 logn)

LLM interactions. Additionally, since certain pipeline parts are
executed at every time step while others are executed at fixed
interval T, we distinguish between them in our complexity
analysis. The results are shown in the TABLE I.

PC generation: Converting a depth map to point clouds
involves transforming each pixel in a w× h depth map into a
corresponding point cloud, with a computational complexity
of O(n2). The computation for a single point is as formula (1).
Coordinate translation: Transforming a point cloud from the
camera coordinate system to the semantic map coordinate sys-
tem involves converting each of the w×h points. This process
has a computational complexity of O(n2). The transformation
for a single point is given by the formula (2). Semantic
segmentation: Using a pre-trained Mask-RCNN on w×h RGB
images, the average inference time on an NVIDIA 3090 Ti
GPU was 0.0232 seconds per image (based on 500 images).
Semantic clustering: The object spatial clustering algorithm
involves multiple convolutions with a small kernel on a m×m
semantic map, masked by obstacles and exploration areas, with
a computational complexity of O(n2). LLM reasoning: For
100 interactions with ChatGPT, the average time from prompt
to response is 1.825 seconds. Frontier detection: Executing
edge detection on a M×M semantic map has a complexity of
O(n2). Repulsion-gravity model: The core involves the classic
Fast Marching Method [37] for shortest path calculation, with
a complexity of O(n2 log n).

LLM for ObjNav Future Research Directions. ChatNav is
the first attempt to integrate LLM with a navigation system,
allowing the robot to perform zero-shot reasoning about spatial
relationships between objects, which significantly enhances
navigation performance. However, this is just the initial ap-
plication of LLM in navigation. By incorporating advanced
technologies such as multimodal large models [38–41] and
LLM agents [42], we can further improve the system’s intel-
ligence and precision. For instance, multimodal large models
can analyze RGB images to gain a deeper understanding of
environments, such as identifying room types or inferring
that a room with a glass door is likely a bathroom, thereby
increasing exploration efficiency. Meanwhile, LLM agents can
centralize decision-making across modules, integrating LLM
into tasks like semantic map construction and clustering, which
enhances ChatNav’s overall intelligence and robustness.

VIII. EXPERIMENT

In this section, we conduct comparative and ablation experi-
ments in the high-resolution Habitat simulator [17]. We assess
our pipeline’s performance by comparing it with other object
goal navigation methods and validate the roles of individual
modules by substituting them within the pipeline. Additionally,

we provide a more detailed examination of how key parame-
ters and the type of LLM affect navigation performance.

A. Experimental Setup

Datasets. We conduct our experiments on real-world 3D
reconstruction scene datasets: Gibson [18] and HM3D [19].
The Gibson dataset comprises 25 train / 5 val scenes from the
Gibson tiny split, with successful navigation defined when the
robot is within 0.1m of the target object. The HM3D dataset
includes 145 train / 36 val scenes, with successful navigation
defined when the robot is within 0.15m of the target object. We
configure 1000 episodes on the validation sets of both datasets
for performance evaluation, while setting 5000 episodes on the
training dataset to collect clustering data for training the offline
mode of semantic relationship reasoning. In both datasets, the
target objects consist of six categories: chair, couch, potted
plant, bed, toilet, and TV.

Configuration Details. We utilize the same robot configura-
tion and a similar semantic map construction setup as SemExp
[13]. We emphasize different configurations and parameter
settings during the ChatNav execution process. The robot
uses fine-tuned MASK-RCNN [35] to recognize 15 common
objects. The semantic map is 480×480 in size, with each cell
representing a 5cm×5cm physical area. The hyperparameters
for the gravitational function are set to [k = 5, b = 0], while
those for the repulsion function are [a = 0.3, α = −0.5, β =
−30]. The relative importance parameters (λ1, λ2) are set to
(0.2, 0.2), and the scaling factors CN , CD, and CV are all
set to 1. Semantic relationship reasoning is conducted using
the ChatGPT Turbo-3.5 model. The interval for calling the
LLM to determine global goal points is set to T = 30.
We check for new semantic information in the semantic map
before each call to avoid unnecessary LLM calls. If new
semantic information is detected, we query the LLM to update
the semantic relationships in the map; otherwise, we use the
previous LLM inference results.

For the clustering algorithm, we set the kernel size to 3× 3
and test different N values on the complete semantic maps
of 25 Gibson training scenarios [18]. As shown in Fig. 10,
N = 15 achieved high ACR and low AMCR, indicating
good clustering performance. Thus, we set N to 15 for further
experiments.

Evaluation Metrics. In addition to the three classic object
navigation metrics—Success Rate (SR), Success weighted by
Path Length (SPL), and Distance to Goal (DTG) [13, 15,
28]—we introduce two time-based metrics, Average Time
(AT) and Average Time Steps (ATS), to compare the nav-
igation performance of ChatNav with other baselines. SR
refers to the percentage of episodes where the target object
is successfully located among the total episodes. SPL is
an indicator focused on successful episodes and means the
efficiency of the robot’s actual path relative to the oracle’s
shortest path [43]. SPL is defined as

SPL =
1

N

N∑
i=1

Si
li

max(pi, li)
(10)
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Fig. 10. Evaluation of clustering performance with different dilation steps
N . When testing clustering performance with N values ranging from 0 to 25,
both ACR and AMCR gradually increase. At N = 15, ACR is already at
a high value while AMCR remains relatively low, indicating good clustering
performance.

where N represents the number of episodes, li denotes the
oracle shortest path length from the starting position of the
robot to the target object, pi is the actual path length expected
by the robot, and Si is a 0-1 variable indicating navigation
success, where Si equals 1 in case of successful navigation.
DTG represents the average distance between the robot and the
target object at the end of episodes. ATS is the average time
steps per episode in the simulator, representing the number
of actions the robot executes since it performs one action per
time step. AT is the average real-time in seconds spent per
navigation episode, reflecting both the system’s algorithmic
efficiency and the robot’s time steps (ATS) to find the target.

An example of a scenario. Fig. 11 illustrates a complete robot
navigation process of searching a bed. ChatNav effectively
guides the robot to explore and ultimately locate the target
bed.

B. Baselines

We design five baselines to compare their navigation per-
formance with ChatNav.

• Random Global Target (RGT): The global target point
is randomly sampled on the entire map, and a determin-
istic policy guides the robot to move toward the global
target point.

• Random Frontier Target (RFT): Compared to RGT,
RFT randomly selects a target frontier from all frontiers
on the map, with the center of the chosen target frontier
serving as the global target point.

• SemExp [13]: SemExp integrates semantic informa-
tion into state representation and employs reinforcement
learning to train the robot in selecting global target points
on the training sets of the Gibson and MP3D datasets. The
global target points are sampled across the entire map and
are not based on frontiers. It marked the winning entry
in the Habitat ObjectNav challenge during CVPR 2021.

• PONI [15]: PONI utilizes the Gibson and MP3D datasets
along with their corresponding semantic annotations to
construct a supervised learning dataset. Through super-
vised training, it acquires both geometric and seman-

tic relationships. These relationships are then used for
decision-making during the navigation process.

• L3MVN [28]: L3MVN is the first to use a Bert language
model [20] for explicit reasoning of object layout rela-
tionships and selecting frontiers as global goal navigation
points based on these relationships. It introduces two us-
age modes for the Bert model: zero-shot (L3MVN-Z) and
feed-forward (L3MVN-F). L3MVN-Z constructs simple
sentences by combining objects around the frontier with
the target object and then employs Bert to score the
sentences, thus selecting the optimal frontier. L3MVN-F
utilizes the MP3D dataset to train a small-scale classifier,
which predicts upcoming categories based on known
categories of objects near the frontier, thus establishing a
link between the target object and the frontier.

C. Result and Discussion

Classic Object Navigation Metrics Analysis. The compara-
tive results are shown in TABLE II. The RFT method (row 2
in TABLE II) significantly improves all three metrics on both
datasets compared to the RGT method (row 1 in TABLE II).
This indicates that setting the global target point at the frontier
is advantageous for the robot to explore unknown environ-
ments. The significant improvement in navigation performance
observed with the SemExp and PONI methods (row 3 and row
4 in TABLE II) clearly illustrates the advantage of leveraging
semantic relationships to enable robots to make more effective
navigation decisions. L3MVN further enhances navigation
performance (row 5 and row 6 in TABLE II), indicating that
using language models to reason about semantic relationships
and incorporating them into navigation decisions is reliable
in object goal navigation. Our proposed ChatNav method
outperforms 3 learning-based methods—SemExp, PONI, and
L3MVN-F (row 7 in TABLE II). This is attributed to our
approach not requiring training on specific datasets to acquire
semantic relationships, thereby demonstrating enhanced gener-
alization capabilities in new and unknown environments. Chat-
Nav (row 7 in TABLE II) and L3MVN-Z (row 6 in TABLE
II) acquire semantic relationships from LLM through zero-
shot learning and participate in navigation decisions. However,
ChatNav consistently outperforms the latter on both datasets,
suggesting that ChatNav can obtain more accurate semantic
relationships and incorporate them into the navigation system
more reasonably. Comparing ChatNav and LocChat (row 8
in TABLE II), the offline mode requires no network and has
a shorter reasoning time, yet the navigation performance is
hardly affected across the three metrics.

Time-based Metrics Analysis. As shown in TABLE III, our
ChatNav and LocChat methods rank first and second respec-
tively in ATS, and third and second in AT. This indicates that
the algorithmic execution efficiency of our proposed pipeline
is relatively high, and the proportion of effective actions per-
formed by the robot is enhanced. Although SemExp achieves
the lowest AT, its ATS is among the highest, suggesting that
while its algorithmic efficiency is high, the robot performs
many redundant navigation actions.
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Fig. 11. The process of the robot searching for a bed. In this context, A depicts the robot’s first-person view, B1 shows the matching result between the
clustered regions and the target region, while B2 illustrates the gravity-repulsion field based on this matching. C displays the frontier’s geometric score, and
D shows the selection of the global goal point, integrating both geometric and semantic utility. At time step t = 2, the LLM identifies two regions the living
room and dining room, which do not match the target region (bedroom). Both of the regions are represented as repulsive forces. At t = 29, the target region
still hasn’t appeared, and all regions continue to exhibit repulsive forces. At t = 79, the robot discovers the toilet and identifies its region as the target-relevant
region, causing an attractive force. The robot successfully discovers the bed at t = 106, guided by the attractive force.

TABLE II
CHATNAV OUTPERFORMS ALL BASELINES IN NAVIGATION.

Gibson(val) HM3D(val)

Method Succ. ↑ SPL ↑ DTG ↑ Succ. ↑ SPL ↑ DTG ↑

RGT 0.661 0.325 1.650 0.207 0.088 3.142
RFT 0.709 0.395 1.218 0.385 0.170 3.057

SemExp 0.717 0.396 1.39 0.431 0.200 3.128
PONI 0.736 0.410 1.250 0.401 0.197 3.239

L3MVN-F 0.764 0.471 1.220 0.594 0.256 2.370
L3MVN-Z 0.756 0.417 1.174 0.561 0.242 2.598

ChatNav 0.826 0.495 0.867 0.595 0.267 2.367
LocChat 0.817 0.490 0.872 0.591 0.262 2.384

TABLE III
CHATNAV DEMONSTRATES THE BEST OVERALL TIME PERFORMANCE.

time RGT RFT SemExp PONI L3-F L3-Z ChatNav LocChat

AT 31.5 28.2 16.4 38.7 32.9 36.9 24.1 22.4
ATS 175.95 163.45 161.82 158.92 147.98 146.74 130.15 138.18

D. Ablation Studies

Importance of Each Module. To demonstrate the impact of
each component of the proposed pipeline on navigation per-
formance, we conducted ablation experiments on the Gibson
and HM3D datasets: frontier exploration algorithm (F-only),
clustering algorithm (Clus.), LLM interaction mode based on
common-sense background (Comm.), and gravity-repulsion
model (G-R). The analysis of the experimental results in
TABLE IV is as follows:

1) The complete ChatNav structure achieves the best naviga-
tion performance (row 6 in TABLE IV). 2) Frontier exploration
is essential for effective exploration in unknown environments,
as removing the frontier exploration algorithm results in nearly
all metrics performing the worst (row 5 in TABLE IV). 3)
Properly applying semantic cues to the navigation system

significantly improves navigation SR and SPL (row 1 in Table
IV). 4) Removing the clustering algorithm leads to incomplete
cues provided to the LLM, causing a decline in all system
metrics (row 2 in TABLE IV). 5) Interacting with the LLM
using common-sense prompts significantly improves naviga-
tion speed on the HM3D dataset, as LLMs excel at handling
common-sense questions (row 3 in Table IV). 6) The removal
of the gravity-repulsion model results in a significant drop
in navigation performance, indicating that properly utilizing
semantic relationships is crucial (row 4 in TABLE IV).

TABLE IV
MODULE ABLATION STUDIES PROVE THE CHATNAV’S EFFICACY.

ChatNav ablation Gibson(val) HM3D(val)

F-only clus. comm. G-R Succ. ↑ SPL ↑ DTG ↑ Succ. ↑ SPL ↑ DTG ↑

✓ 0.787 0.474 1.058 0.586 0.267 2.367
✓ ✓ ✓ 0.806 0.475 0.893 0.581 0.257 2.472
✓ ✓ ✓ 0.819 0.482 0.874 0.590 0.179 2.385
✓ ✓ ✓ 0.803 0.46 0.962 0.574 0.262 2.331

✓ ✓ ✓ 0.762 0.452 1.295 0.549 0.246 2.520

✓ ✓ ✓ ✓ 0.826 0.495 0.867 0.595 0.267 2.377

Key Hyperparameters Analysis. To further enhance the
interpretability of the ChatNav pipeline design, we conducted
additional experimental analysis on the key parameters and
model types involved in the pipeline on the Gibson dataset.
Specifically, we investigated the impact of dilation iterations
in clustering N , geometric importance parameters λ1, and
semantic importance parameters λ2.

We conduct four comparative experiments with N set to
0, 5, 15, and 25. Among these settings, N = 0 corresponds
to no clustering, N = 5 to insufficient clustering, N = 15
to optimal clustering performance, and N = 25 to severe
clustering errors. As shown in TABLE V, the best navigation
performance is achieved with N = 15.

We conduct three sets of experiments by adjusting the im-
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TABLE V
NAVIGATION PERFORMANCE IS BETTER WHEN N IS SET TO 15.

Gibson(val)

N Succ. ↑ SPL ↑ DTG ↑

0 0.806 0.475 0.893
5 0.811 0.481 0.887
15 0.826 0.495 0.867
25 0.791 0.476 1.032

portance parameters for semantics and geometry. The (λ1, λ2)
values were set to 0.1 and 0.3 to prioritize semantic relation-
ships, 0.3 and 0.1 to prioritize geometric relationships, and 0.2
and 0.2 to treat both semantic and geometric relationships with
equal importance in navigation. The results, shown in TABLE
VI, indicate that navigation performance is optimal when both
semantic and geometric information are considered equally.

TABLE VI
NAVIGATION PERFORMANCE IS OPTIMAL WHEN BOTH SEMANTIC AND

GEOMETRIC INFORMATION ARE CONSIDERED EQUALLY.

Gibson(val)

(λ1, λ2) Succ. ↑ SPL ↑ DTG ↑

(0.1, 0.3) 0.812 0.485 0.877
(0.3, 0.1) 0.822 0.492 0.871
(0.2, 0.2) 0.826 0.495 0.867

Impact of LLM Type. We conduct four comparative ex-
periments using ChatGPT-3.5, ChatGPT-4.0, and RoBERTa-
large [20] models to evaluate ChatNav’s navigation perfor-
mance. ChatGPT-3.5 and 4.0 have larger parameter sizes
and superior text processing capabilities than RoBERTa-large.
For RoBERTa-large, we tested two modes: Bert-Z (zero-shot
inference) and Bert-F (fine-tuned for downstream tasks, as in
LocChat). The experimental results, as shown in TABLE VII,
lead to two conclusions: first, comparing row 1, row 2, and
row 3, row 4, the stronger the reasoning capability of the
large model, the better the navigation performance; second,
comparing row 1 and row 2, fine-tuning less capable language
models improves navigation performance.

TABLE VII
THE HIGHER THE MODEL’S PERFORMANCE, THE BETTER THE NAVIGATION

RESULTS.

Gibson(val)

LLM Succ. ↑ SPL ↑ DTG ↑

Bert-Z 0.812 0.482 0.931
Bert-F 0.817 0.490 0.872

Chatgpt3.5 0.826 0.495 0.867
Chatgpt4 0.827 0.497 0.871

IX. CONCLUSION

We propose a pipeline for object goal navigation, called
ChatNav, which integrates a LLM. It enables stable and
reasoned zero-shot inference of object semantic relationships
and effectively incorporates them into the navigation system,

thereby achieving efficient and accurate navigation. We eval-
uated the performance of our pipeline on two high-resolution
3D datasets, Gibson and HM3D. Our pipeline demonstrated
superior accuracy and speed without the need for any training,
outperforming current state-of-the-art methods. In the future,
we plan to further explore the local zero-shot semantic rela-
tionship acquisition to address the issue of frequent network
dependency on accessing large model APIs [44].
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