
Future Generation Computer Systems 156 (2024) 206–220

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

ANNProof: Building a verifiable and efficient outsourced approximate
nearest neighbor search system on blockchain
Lingling Lu a, Zhenyu Wen b,c,∗, Ye Yuan d, Qinming He a, Jianhai Chen a, Zhenguang Liu a

a College of Computer Science and Technology, Zhejiang University, Hangzhou, China
b Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China
c University of Science and Technology of Chinay, Hefei, China
d School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China

A R T I C L E I N F O

Keywords:
K-ANN search
Verifiable outsourced query
Cloud computing
Blockchain
Merkle tree

A B S T R A C T

Data-as-a-service is increasingly prevalent, with outsourced K-approximate nearest neighbors search (K-ANNS)
gaining popularity in applications like similar image retrieval and anti-money laundering. However, malicious
search service providers and dataset providers in current outsourced query systems cause incorrect user query
results. To address this, we propose ANNProof, a novel framework supporting verifiable outsourced K-ANNS on
the blockchain. ANNProof utilizes two innovative authenticated data structures (ADS), the Merkle HNSW node
tree, and the Merkle vector identifier tree, for efficient K-ANNS query verification. Additionally, we employ
the Merkle sharding tree as an ADS optimization technique, reducing the overhead of delivering verifiable
queries. We implement the ADS construction protocol based on blockchain smart contracts to ensure tamper-
evident datasets and enhance execution efficiency via a contract state consistency checking scheme. Extensive
evaluations show that ANNProof reduces VO generation time, result verification time, and VO size by 160, 120,
and 28×, respectively, compared to the state-of-the-art systems. Moreover, ADS construction using ANNProof
takes at most 2% of the index construction time, resulting in a negligible overhead for implementing verifiable

queries. Meanwhile, the sharding optimization accelerates ADS updates by 53×.
1. Introduction

The emergence of data-as-a-service (DaaS) technology has led to
an increasing number of cloud service providers offering outsourced
query services to end-users, providing access to large-scale datasets
across various fields. With DaaS, users do not have to download or store
the complete dataset. Instead, they can delegate queries to cloud plat-
forms like Google Cloud [1], Amazon Web Services [2], and Microsoft
Azure [3].

In this paper, we consider one of the most popular query sce-
narios K-Approximate Nearest Neighbors Search (K-ANNS) [4]. The
outsourced K-ANNS query approach has been used in various appli-
cations, including similar images, text, music retrieval, personalized
services, stock recommendations, and anti-money laundering [5–9]. K-
ANNS requires a defined distance function between the vector data
elements. K-ANNS aims to find the approximate 𝐾 elements from the
dataset that minimize the distance to a given query data element.

Example 1 (Outsourced K-ANNS). Bob, an internet anti-money launder-
ing commissioner, has obtained a bank account linked to a laundering

∗ Corresponding author.
E-mail addresses: lulingling@email.cufe.edu.cn (L. Lu), zhenyuwen@zjut.edu.cn (Z. Wen), yuan-ye@bit.edu.cn (Y. Yuan), hqm@zju.edu.cn (Q. He),

chenjh919@zju.edu.cn (J. Chen), liuzhenguang2008@gmail.com (Z. Liu).
URLs: https://github.com/lulinglingcufe (L. Lu), http://www.zhenyu.info/ (Z. Wen).

ring and seeks more suspicious accounts belonging to the group [10,
11]. To achieve this, Bob may want to analyze account transaction
behavior data that may be available on the data providers (𝐷𝑃) such
as International Banking Cooperation Alliance (IBCA). Moreover, on-
line data analytic service providers (𝑆𝑃) such as Demyst [12] and
PeerIQ [13] can have access to these data and charge their services
based on the number of queries. The IBCA maintains an account be-
havior dataset 𝐷, representing each element as ⟨𝑘𝑖, 𝑣𝑖⟩. For instance, the
exposed account ID held by Bob is 𝑘𝑖, while the account behavior vector
is 𝑣𝑖. Utilizing the K-ANNS method, Bob queries the top-𝑘 elements
nearest to 𝑣𝑖 in 𝐷, discovering K accounts with behaviors most similar
to the suspected account.

Challenges. Building an outsourced K-ANNS system presents the fol-
lowing challenges.

C1: 𝑺𝑷 delivers correct query results. 𝑆𝑃 s may provide incorrect
query results for two reasons: (i) Mistakes (e.g., code errors) causing
𝑆𝑃 to produce incorrect results. (ii) Deliberate provision of incorrect
vailable online 2 March 2024
167-739X/© 2024 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2024.03.002
Received 26 October 2023; Received in revised form 26 January 2024; Accepted 1
 March 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:lulingling@email.cufe.edu.cn
mailto:zhenyuwen@zjut.edu.cn
mailto:yuan-ye@bit.edu.cn
mailto:hqm@zju.edu.cn
mailto:chenjh919@zju.edu.cn
mailto:liuzhenguang2008@gmail.com
https://github.com/lulinglingcufe
http://www.zhenyu.info/
https://doi.org/10.1016/j.future.2024.03.002
https://doi.org/10.1016/j.future.2024.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.03.002&domain=pdf

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

C
t

C
q
m
i

a

S
t
a
n

a
A
A
q
d

in
i
s
t
a
d
B
e

r
×
e
a
n

results, either to save costs or for other obscure reasons (e.g., involve-
ment in money laundering networks). While cross-checking results
from multiple 𝑆𝑃 s could verify correctness, this approach increases
query expenses and fails to address potential collusion among 𝑆𝑃 s.

onsequently, a verifiable query scheme is indispensable, allowing Bob
o verify the query results’ correctness.

2: 𝑫𝑷 provides tamper-evident datasets. Traditional outsourcing
uery models assume the 𝐷𝑃 is honest [14,15]. Nevertheless, a 𝐷𝑃
ay harbour malicious intent towards 𝑆𝑃 or be compromised, deliver-

ng incorrect datasets that could lead to false accusations against 𝑆𝑃 .
Therefore, enhancing 𝐷𝑃 accountability is necessary to prevent it from
provisioning tampered datasets.

Our solution. This paper proposes ANNProof, a verifiable K-ANNS
query framework, to tackle the above challenges. We present solutions
S1 and S2, addressing challenges C1 and C2.

S1. To answer K-ANNS queries, 𝑆𝑃 constructs an index using the
dataset supplied by 𝐷𝑃 . 𝑆𝑃 retrieves query results by searching a
portion of the index structure and its corresponding data, denoted as
𝐼𝑞 . If 𝑆𝑃 transmits 𝐼𝑞 to a user, the client user can perform a local
search algorithm on 𝐼𝑞 to obtain the same K-ANNS result as 𝑆𝑃 . This
study does not consider privacy leakage and follows the assumptions
in [5,16], where datasets are publicly accessible. To address C1, the
key is to guarantee 𝐼𝑞 ’s integrity. A promising solution is to design an
authenticated data structure (ADS) based on the entire index structure.
Upon delivering result 𝑅 to the user, 𝑆𝑃 appends 𝐼𝑞 and the verification
object 𝑉 𝑂𝑠𝑝 generated from the ADS, forming {𝑅, 𝐼𝑞 , 𝑉 𝑂𝑠𝑝}. The user
then verifies 𝐼𝑞 ’s correctness using 𝑉 𝑂𝑠𝑝 and executes a local search
lgorithm to verify 𝑅.

2. To address C2 and prevent dataset tampering, we propose storing
he hash of the dataset’s associated ADS on the blockchain. If 𝐷𝑃 sends
tampered dataset to 𝑆𝑃 , the hash of the 𝑆𝑃 ’s constructed ADS will

ot match the one stored on the blockchain, allowing 𝑆𝑃 to detect 𝐷𝑃 ’s
malicious behavior.

Ensuring the effectiveness of this solution relies on constructing
unique ADS for a given dataset. We develop an ADS construction protocol
based on blockchain to achieve this. By utilizing smart contracts, 𝐷𝑃
nd 𝑆𝑃 s achieve consensus on key parameters such as indexing and
DS construction algorithms. With these parameters determined, the
DS built on a specific dataset is guaranteed to be unique. Conse-
uently, honest 𝑆𝑃 s construct consistent ADS upon receiving the same
ataset, thereby ensuring the uniqueness of the ADS hash.

Additionally, direct storage and computation of ADS on the blockcha
ncur significant costs, exemplified by Ethereum charging $30 for
toring 1 MB of data [17]. Therefore, we propose a contract state consis-
ency checking scheme based on an endorsement policy. This approach
llows blockchain endorsing nodes to verify not the consistency of all
ata in the ADS but only the consistency of the ADS’s Merkle root state.
y doing so, the scheme reduces system load and enhances ANNProof
fficiency while maintaining trustworthiness.

Empirical results show that ANNProof achieves VO generation and
esult verification overhead at the millisecond level, 160 and 120

faster than the state-of-the-art systems. The sharding optimization
nables a 53 × faster speed for ADS updating. ADS construction takes
t most 2% of the time required for index construction, resulting in a
egligible overhead for implementing the ANNProof framework.

To summarize, this paper’s contributions are as follows:

• For the first time in the literature, we study the problem of out-
sourced approximate nearest neighbor search in the blockchain.
As an initial exploration, we propose ANNProof, an efficient
authentication framework for K-ANNS queries against large-scale
207

vector datasets.
Table 1
Notations in ANNProof.

Notation Description

𝐷,𝑅 Outsourced dataset by 𝐷𝑃 , query results delivered by 𝑆𝑃
𝐼𝑞 Partial index structure searched for a specific user query
𝑉 𝑂𝑠𝑝 Verification objects generated from ADS to guarantee 𝐼𝑞 ’s

integrity
𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 ADS’s Merkle root recorded in the blockchain
𝑄, 𝑞 A specific user query, the queried vector
𝑜𝑖 , 𝑘𝑖 , 𝑣𝑖 A data object in 𝐷, 𝑜𝑖 ’s identifier, 𝑜𝑖 ’s vector value
𝜏, 𝜏𝑣𝑜 A Merkle tree, a 𝑉 𝑂𝑠𝑝 tree
𝐻𝑖𝑛𝑑𝑒𝑥 HNSW index
𝑀 Number of connections between the nodes in 𝐻𝑖𝑛𝑑𝑒𝑥
𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 Dynamic candidate list size in 𝐻𝑖𝑛𝑑𝑒𝑥 construction
𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ Dynamic candidate list size in 𝐻𝑖𝑛𝑑𝑒𝑥 search
𝑠ℎ𝑠𝑖𝑧𝑒 Maximum quantity of leaf nodes in a shard
𝑠ℎ𝑖𝑑 Sequence number of a Merkle tree shard
𝐼𝑑𝑠ℎ𝑖𝑑 Visited nodes’ sequence numbers in the 𝑠ℎ𝑖𝑑-th Merkle tree

shard
𝐶𝐴𝐷𝑆 ADS construction contract
𝑣𝑝, 𝜇, 𝑉𝑙𝑒𝑎𝑓 VP-tree’s vantage point, median distance, a bucket of vectors

Fig. 1. Blockchain data structure.

• We propose two novel ADSs, the Merkle HNSW node tree and
the Merkle vector identifier tree, which support efficient K-ANNS
semantic verification. Additionally, we develop the ADS optimiza-
tion technique of the Merkle sharding tree, further reducing the
overhead of 𝑆𝑃 delivering verifiable queries (Section 4).

• We develop the ADS construction protocol leveraging smart con-
tracts to ensure tamper-evident dataset and enhance ANNProof
efficiency using a contract state consistency checking scheme
(Section 5).

• We conduct a theoretical analysis to validate the security of our
proposed ADS (Section 6). Extensive experiments demonstrate the
effectiveness and performance advantages of ANNProof compared
with state-of-the-art systems. ANNProof is released on Github for
public use [18] (Section 7).

Organization. The rest of the paper is organized as follows. Section 2
introduces some preliminaries and Section 3 describes the ANNProof
design. Section 4 then presents the two proposed ADS, followed by
a description of the overall ANNProof framework in Section 5. Sec-
tion 6 provides a security analysis. In Section 7, we conduct extensive
experiments to evaluate the performance of ANNProof. In Section 8,
we reviews existing studies on outsourced query system (OQS) and
compare them with ANNProof. Finally, we conclude our paper in
Section 9.

2. Background and preliminaries

This section presents some background blockchain knowledge and
preliminaries for verifiable queries. Table 1 summarizes the frequently
utilized symbols throughout this paper.

2.1. Blockchain and smart contract

Block structure: A blockchain consists of a series of blocks sequentially
linked via cryptographic hash pointers, as depicted in Fig. 1. A block
comprises two components: the block body and header. The body

stores a transaction list 𝑡𝑥𝑙𝑖𝑠𝑡. The header contains a MHT root ℎ𝑟𝑜𝑜𝑡

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

},

in

},
Fig. 2. An example of verifiable queries in the Merkle hash tree.

constructed from 𝑡𝑥𝑙𝑖𝑠𝑡, a hash of the preceding block ℎ𝑝𝑟𝑒, a timestamp
𝑡𝑠, and a nonce derived from a consensus process among network peers
.
Data model: The block structure is tamper-proof and serves as an im-
mutable data source. Blockchain system adopts a key–value or account-
based data model, operationalized through world state databases main-
tained by peers [19,20]. These databases store the key–value data,
ensuring data consistency across the network.
Smart contracts: are trusted programs that can execute transactions
and update the key–value data in the world state databases of peers.
This functionality enhances the blockchain’s ability to automate pro-
cesses and enforce contractual agreements without intermediaries [21,
22].

2.2. Preliminaries of verifiable outsourced queries

Outsourced queries refer to a scenario where 𝐷𝑃 outsources the
data to a 𝑆𝑃 who offers query services to users [23,24]. In this context,
users can utilize specific technologies for query result verification [25,
26], and the Merkle Hash Tree (MHT) is a classic ADS used for this
purpose [27,28].

Example 2 (Verifiable Query using MHT).
(1) ADS construction. 𝑆𝑃 maintains a MHT with 8 leaf nodes {𝑁1,… , 𝑁8
as illustrated in Fig. 2. Each leaf node in the MHT stores a data object’s
digest, computed using a cryptographic hash function ℎ(⋅). Constructed
bottom-up, the MHT is a binary tree where each internal node stores
a digest computed from the concatenation of its children’s digests,
e.g., ℎ𝑁1,0

= ℎ(ℎ𝑁2,0
|ℎ𝑁2,1

).
(2) Integrity assurance through Merkle root. MHT ensures tamper evident
in two aspects. Firstly, 𝐷𝑃 and 𝑆𝑃 sign the Merkle root; thus, any
alteration to ℎ𝑁0,0

by attackers would be detected as it would violate
the 𝐷𝑃 ’s and 𝑆𝑃 ’s certificates [16]. Secondly, if attackers modify the
leaf nodes in the MHT, the corresponding Merkle root, ℎ𝑁0,0

, will adjust
in response, further safeguarding the integrity of the MHT [29].
(3) VO verification. The user receives query results 𝑅 = {𝑁5, 𝑁6}
attached with 𝑉 𝑂𝑠𝑝 from 𝑆𝑃 . 𝑆𝑃 generates 𝑉 𝑂𝑠𝑝 = {ℎ𝑁1,0

, ℎ𝑁2,3
}

according to the MHT ADS. The user can then reconstruct a Merkle
root using 𝑅 and 𝑉 𝑂𝑠𝑝, comparing it to the publicly available Merkle
root ℎ𝑁0,0

. If they match, the user can verify the result 𝑅 is not tampered
with by 𝑆𝑃 .
Verification basis. MHT-based ADS leverages the collision resistance of
the hash function [30,31], ensuring that 𝑆𝑃 cannot forge data objects
to make the user reconstruct a root identical to ℎ𝑁0,0

.

2.3. Verifiable query in blockchain

Verifiable key–value queries. Blockchain technology offers publicly
accessible and immutable data storage. To support verifiable key–value
queries, we store data digests on-chain and maintain the complete data
off-chain with 𝑆𝑃 s. In this design, the key refers to an identifier used
to request data, and the value is the actual data retrieved from 𝑆𝑃 s.
208
Fig. 3. Verifiable query framework in hybrid-storage blockchain.

Users verify the integrity of query results from 𝑆𝑃 s by comparing query
results’ digests with the corresponding on-chain digests [23,32].

Verifiable query framework in blockchain. A hybrid-storage blockcha
is proposed for supporting advanced query semantics beyond simple
key–value queries, as depicted in Fig. 3. In this architecture, 𝑆𝑃 stores
data off-chain, and 𝐷𝑃 uses a smart contract to maintain the on-chain
ADS [16,29].

In Fig. 3, users retrieve query results {𝑅, 𝑉 𝑂𝑠𝑝} from 𝑆𝑃 , and
𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 from ADS in blockchain. By combining 𝑉 𝑂𝑠𝑝 and 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛,
users can verify 𝑅’s correctness. 𝐷𝑃 utilizes cryptographic primitives
like accumulators and MHT to construct ADS [30,33,34]. When using
the MHT primitive, 𝑆𝑃 stores the data locally, while 𝐷𝑃 stores the
MHT root on the blockchain. Furthermore, if 𝑆𝑃 uses specific indexes
to expedite query result generation, 𝐷𝑃 stores the MHT-based ADS
corresponding to the index on the blockchain.

Section 3.2 will discuss the limitations of existing verifiable query
frameworks in blockchain and introduce the key technologies in AN-
NProof that address these challenges.

3. ANNProof design and overview

This section presents the K-ANNS semantics and design ideas of
ANNProof, followed by ANNProof overview and its motivation to build
on blockchain.

3.1. Query semantics of ANNProof

We first formally define the K-ANNS (Top-𝑘 vector search) query ap-
proach employed in ANNProof. 𝐷𝑃 outsources dataset 𝐷 = {𝑜1, 𝑜2,… , 𝑜𝑛
consisting of 𝑛 vector data objects, to 𝑆𝑃 s. Each vector data object is
modeled as a tuple 𝑜𝑖 = ⟨𝑘𝑖, 𝑣𝑖⟩, where 𝑘𝑖 serves as a unique identifier,
such as the account ID in the anti-money application. 𝑣𝑖 denotes 𝑜𝑖’s
vector value. 𝑆𝑃 s answer K-ANNS queries for users by constructing a
query index based on 𝐷.

Let 𝑞 be the query vector, 𝑣𝑛 be the vector value of 𝑜𝑛 in the dataset.
We can calculate the distance between 𝑞 and 𝑣𝑛 via a distance function
𝑑(𝑞, 𝑣𝑛), e.g., euclidean distance, cosine distance, and dot product. To
identify the 𝑘 most similar vectors to 𝑞, we ensure that for 𝑅 =
{𝑣𝑡𝑜𝑝𝑖}

𝑘
𝑖=1, both ∀𝑖 ∈ [1, 𝑘] and ∀𝑣𝑛 ∉ 𝑅 satisfy Eq. (1).

𝑑(𝑞, 𝑣𝑛) ≥ 𝑑(𝑞, 𝑣𝑡𝑜𝑝𝑖) (1)

3.2. Key technologies of ANNProof

The existing blockchain-based verifiable query framework, dis-
cussed in Section 2.3, does not satisfy verifiable K-ANNS queries for
two primary limitations:

1. K-ANNS verification issue: Conventional studies use a tree
structure for the off-chain data index [5,6,31]. However, em-
ploying tree-based approaches like VP-tree or k-d tree for K-
ANNS semantics leads to significant user verification overhead.

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.
Fig. 4. ANNProof overview based on the ADS construction protocol.

2. ADS construction cost issue: The economic cost of computing
and storing complex ADS on public blockchains is substan-
tial [17].

To address the verification of query semantics, we first design a
verification workflow and then propose two ADSs.

• Verification workflow of K-ANNS: Users obtain partial index 𝐼𝑞
from 𝑆𝑃 and perform a local search process on 𝐼𝑞 to obtain the K-
ANNS result. User verification cost aligns with the computational
complexity of 𝑆𝑃 searching the complete index to generate the
K-ANNS result. In this workflow, the hierarchical navigable small
world graphs (HNSW) index outperforms other K-ANNS indexes
due to the efficiency of its search algorithm, providing users with
a smaller size 𝐼𝑞 , shorter search time, and determined search
paths.

• ADSs: We propose the Merkle HNSW node tree as ADS to ensure
the integrity of each node in 𝐼𝑞 , thereby guaranteeing the overall
integrity of 𝐼𝑞 . Besides, users usually query 𝑆𝑃 using vector
identifiers, as illustrated in Example 1 of Section 1, where Bob
uses the account ID as the query attribute. To prevent potential
dishonesty from 𝑆𝑃 via incorrect account vectors, we propose the
second ADS, the Merkle vector identifier tree, which ensures the
integrity of identifier-vector relationships.

To mitigate the construction costs of ADS, we store the ADS root on
the blockchain instead of the complete ADS. Besides, EVM (ethereum
virtual machine) in public blockchain lacks support for executing
complex ADS construction [35], leading us to opt for permissioned
blockchain and endorsement policy to ensure the trustworthiness of the
ADS construction process. Additionally, we employ sharding techniques
to transform the ADS into a smaller-sized MHT, reducing the computa-
tion time for 𝑆𝑃 s to generate VO. The tradeoff here lies in increasing
𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 numbers stored on the blockchain to decrease the computation
overhead on 𝑆𝑃 s.

3.3. ANNProof overview

Fig. 4 illustrating the overall ANNProof workflow based on the ADS
construction protocol, comprising four steps.

Step ①. 𝐷𝑃 outsources datasets to 𝑆𝑃 s. Each SP constructs an index
using the dataset to answer K-ANNS queries efficiently.

Step ②. To address C2, 𝐷𝑃 uses the identity certificate to invoke the
ADS construction smart contract, pre-deployed on the 𝑆𝑃 , to prevent
209
dataset tampering. Given pre-defined construction algorithms and pa-
rameters, 𝑆𝑃 s can locally build consistent ADS based on the same
dataset.

Step ③. We store 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 on the blockchain as the execution result of
the ADS construction smart contract. This allows users to verify out-
sourced queries using the publicly available 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛, as demonstrated
in Example 2 and Fig. 3.

Step ④. 𝑆𝑃 offers a verifiable query API to users. Given a user query 𝑄,
𝑆𝑃 searches the index to obtain 𝐼𝑞 and 𝑅, then generates 𝑉 𝑂𝑠𝑝 for 𝐼𝑞
based on the ADS. In Fig. 4, upon receiving {𝑅, 𝐼𝑞 , 𝑉 𝑂𝑠𝑝} from 𝑆𝑃 , the
client user retrieves 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛. By combining 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 and 𝑉 𝑂𝑠𝑝, users can
verify 𝐼𝑞 ’s integrity and subsequently execute a local search algorithm
to obtain 𝑅′, thus verifying the consistency between 𝑅′ and 𝑅.

ADS update protocol. When 𝐷𝑃 inserts new vectors into the dataset,
𝑆𝑃 must update the ADS correspondingly. We design an efficient ADS
update protocol that enables 𝑆𝑃 to enhance efficiency by incrementally
constructing the ADS rather than fully reconstructing it (more details
in Section 5.3).

Security requirements of verifiable queries. Using VO, users can
verify the query results’ soundness, completeness, and freshness, meet-
ing the following security requirements.

• Freshness: All answers are derived from the most up-to-date
version of the dataset.

• Completeness: The query results are guaranteed to include all
valid answers without omissions.

• Soundness: All answers satisfy the query criteria and are exclu-
sively sourced from the designated 𝐷𝑃 .

Section 6 provides the security analysis that formally proves AN-
NProof can meet the above-mentioned requirements.

3.4. Motivation for implementing ANNProof on blockchain

The adoption of blockchain technology in ANNProof is driven by
the need to detect malicious activities potentially conducted by 𝐷𝑃
and 𝑆𝑃 s effectively. When outsourcing datasets to 𝑆𝑃 s, 𝐷𝑃 stores
the hash of the dataset’s associated ADS on the block-chain. Once 𝐷𝑃
commits the hash value to the blockchain, it is public and immutable.
This mechanism, illustrated in Section 3.3, Fig. 4, operates via an smart
contract-based ADS construction protocol.

Detection of malicious activities by DP. If a 𝐷𝑃 sends a tampered
dataset to 𝑆𝑃 s, a discrepancy between the ADS hash constructed by the
𝑆𝑃 and the hash recorded on the blockchain will be evident, signaling
potential 𝐷𝑃 misbehavior.

Detection of malicious activities by SP. When a 𝑆𝑃 provides erro-
neous {𝑅, 𝐼𝑞 , 𝑉 𝑂𝑠𝑝} to users, such incorrectness can be identified by
users through the combined use of 𝑉 𝑂𝑠𝑝 and 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛, as described in
Section 3.3, step ④.

4. Verifying K-ANNS query via Merkle HNSW node tree

This section presents the Merkle HNSW node tree that implements
the ANNProof workflow ① ∼ ④ delineated in Section 3.3, demon-
strating how 𝑆𝑃 constructs query index, builds ADS and delivers
verifiable queries within the corresponding steps. Subsequently, the
Merkle vector identifier tree is introduced, followed by a formal com-
plexity analysis of the Merkle sharding tree that demonstrates the
efficiency of this ADS optimization technique.

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.
Fig. 5. Insert the 8-th vector, denoted as 𝑁8 into the HNSW index.

4.1. Query index construction

As described in Section 3.3 step ①, 𝑆𝑃 first needs to build an
index for the upon receiving dataset 𝐷 from 𝐷𝑃 . We employ Algorithm
1 to construct a hierarchical navigable small world graphs (HNSW)
index [36].

Index construction overview. With each vector insertion, a node,
defined in Eq. (2), is added to 𝐻𝑖𝑛𝑑𝑒𝑥. The identifier of the next inserted
node is 𝑖𝑑 + 1. Algorithm 1 updates 𝑁𝑖𝑑 ’s neighborhood 𝑒𝐶𝑜𝑛𝑛. Upon
inserting all vectors into the HNSW index, the construction of 𝐻𝑖𝑛𝑑𝑒𝑥 is
finalized, comprising 𝑛 nodes.

𝑁𝑖𝑑 = {𝑖𝑑, 𝑣𝑖𝑑 , 𝑒𝐶𝑜𝑛𝑛} (2)

Algorithm 1: INSERT(𝑣𝑖𝑑 , 𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑−1)
Input: 𝑣𝑖𝑑 , 𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑−1 , 𝑁𝑖𝑑 , 𝑀 , 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, seed
Output: 𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑

1 𝑙𝑐 ← GetLevel(seed, 𝑣𝑖𝑑)
2 𝑒𝑝𝑙𝑐 ← GetEp(𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑−1 .𝑒𝑝, 𝑙𝑐)
3 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← Search-Layer(𝑣𝑖𝑑 , 𝑒𝑝𝑙𝑐 , 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, 𝑙𝑐)
4 𝑁𝑖𝑑 .𝑒𝐶𝑜𝑛𝑛[𝑙𝑐] ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
5 Update-Neighbors(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, 𝑣𝑖𝑑 ,𝑀, 𝑙𝑐)
6 𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑 ← Append(𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑−1 , 𝑁𝑖𝑑)

Vector insertion algorithm. Algorithm 1 takes the following inputs:
the id-th inserted vector 𝑣𝑖𝑑 , the pre-insertion index 𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑−1 , the
inserted node 𝑁𝑖𝑑 , the number of connections 𝑀 between the node
and other nodes, the dynamic candidate list size 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, and
the seed for generating level of 𝑣𝑖𝑑 . The output is the updated index
𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑 [37]. 𝑁𝑖𝑑 ’s level 𝑙𝑐 is generated from the seed (line 1). By using
the enter-point in 𝑙𝑐 (line 2), the 𝑆𝑒𝑎𝑟𝑐ℎ − 𝐿𝑎𝑦𝑒𝑟 function locates 𝑣𝑖𝑑 ’s
neighbors (lines 3). These neighbors are placed in 𝑁𝑖𝑑 ’s 𝑒𝐶𝑜𝑛𝑛 (line 4).
Afterward, 𝑈𝑝𝑑𝑎𝑡𝑒 −𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 function updates 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 by adding
𝑖𝑑 to their 𝑒𝐶𝑜𝑛𝑛 (line 5). Lastly, 𝑁𝑖𝑑 is appended to 𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑−1 , yielding
the updated index 𝐻𝑖𝑛𝑑𝑒𝑥𝑖𝑑 (line 6).

Example 3 demonstrates the HNSW index construction, highlighting
vectors’ individual insertion and multiple neighbor relationships in
index nodes.

Example 3 (𝐻𝑖𝑛𝑑𝑒𝑥8 Construction). 𝑆𝑃 constructs the HNSW index by se-
quentially inserting each vector into the index. 𝑆𝑃 employs Algorithm
1 to insert the 8-th vector into 𝐻𝑖𝑛𝑑𝑒𝑥7 . Fig. 5 illustrates a three-layer
graph index, denoted as 𝐻𝑖𝑛𝑑𝑒𝑥7 . In each layer, nodes connect to their
neighboring nodes. With 𝑀 = 3, a node can have a maximum of 3
neighbors with minimized vector distance.

First, 𝑁8’s layer level, denoted as 𝑙𝑐 = 0, is generated from the
seed (line 1). The enter-point in layer 0 is 𝑒𝑝0 = 𝑁4 (line 2). The
𝑆𝑒𝑎𝑟𝑐ℎ − 𝐿𝑎𝑦𝑒𝑟 function starts from 𝑁4, which connects to 𝑁3, 𝑁5,
and 𝑁7. So we calculate the distance between these neighbors and 𝑣8.
With 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 6, we continue to calculate the distance between
𝑁3’s neighbor (𝑁2), 𝑁6’s neighbor (𝑁1, 𝑁7) and 𝑣8, choosing 3 nearest
neighbors of 𝑣8 (line 3). Then we link 𝑁8 with 𝑁4 and 𝑁7 (line 4),
updating 𝑁4 and 𝑁7 by removing the edge between them (line 5). Upon
inserting 𝑁 into the graph, 𝑆𝑃 finishes 𝐻 construction (line 6).
210

8 𝑖𝑛𝑑𝑒𝑥8
Advantages of HNSW. We explain why HNSW is a promising solution
for outsourced query scenarios from two aspects.
(1) General semantic. ANNProof employs K-ANNS for query semantics,
a versatile method for vector similarity retrieval in domains such as
image, text, and music [7,8]. For example, by representing songs as
multi-dimensional vectors, K-ANNS efficiently retrieves similar music
using HNSW. In contrast, prior work like ImageProof is limited to image
retrievals using k-d tree and inverted index [5].
(2) Performance superiority. Two categories of indices can support K-
ANNS: tree indices and graph indices, with VP-tree [38] and HNSW as
respective examples. Addressing C1 requires maintaining the integrity
of 𝐼𝑞 , with smaller sizes yielding better verifiable query performance.
HNSW outperforms VP-tree in search efficiency by requiring fewer
nodes for a given query 𝑞, thus reducing 𝐼𝑞 size.

• VP-tree uses a vantage point to partition the search space based
on other nodes’ distances to this vantage point [39]. In high-
dimensional spaces, the sparsity of data node distribution may
increase the number of nodes to be searched.

• HNSW employs a multi-layered graph structure, enabling quicker
proximity to the target node during the search. The layered
approach assigns data nodes to different graph layers, each with
unique neighbors at different layers. Upper layers contain fewer
nodes than lower layers, so a search initiating from the top can
swiftly locate an approximate nearest neighbor, followed by more
detailed searches in lower layers, substantially amplifying search
efficiency.

4.2. ADS construction: Merkle HNSW node tree

To ensure the integrity of 𝐼𝑞 , a subset of 𝐻𝑖𝑛𝑑𝑒𝑥 nodes, we use MHT-
based ADS, with index nodes as MHT leaf nodes (Section 3.3 step
②). However, as the number of index nodes increases, VO generation
complexity exponentially increases. This section introduces a novel ADS
called the sharded Merkle HNSW node tree, which partitions ADS into
sub-trees, limiting the complexity of ADS to a sharding threshold and
reducing the VO generation complexity.

ADS data structure. The leaf node digest is obtained using Definition 1,
followed by constructing the internal node using Definition 2. As
described in Section 3.3 step ③, the ADS’s Merkle root will be stored
in the blockchain.

Definition 1 (Digest of Leaf Node). 𝑁𝑖𝑑 , denoted by sequence number
𝑖𝑑, is a HNSW index node (also a node in 𝐼𝑞). Eq. (3) denotes ℎ𝑁𝑖𝑑

as
node information’s hash comprising 𝑁𝑖𝑑 ’s three components, delineated
in Eq. (2). ‘‘|’’ is the string concatenation operator.

ℎ𝑁𝑙𝑒𝑎𝑓
= ℎ𝑁𝑖𝑑

= ℎ(ℎ𝑖𝑑 |ℎ𝑣𝑖𝑑 |ℎ𝑒𝐶𝑜𝑛𝑛) (3)

Definition 2 (Digest of Internal Node). The internal node digest is
defined in Eq. (4). ℎ𝑁 𝑙

𝑖
(ℎ𝑁𝑟

𝑖
) is the digest of 𝑁𝑖’s left (right) child.

ℎ𝑁𝑖
= ℎ(ℎ𝑁 𝑙

𝑖
|ℎ𝑁𝑟

𝑖
) (4)

Merkle sharding tree optimization. By partitioning the ADS into multiple
shards, 𝑆𝑃 reduces the size of each sub-Merkle tree and minimize
verification costs for outsourced queries. With 𝑛 index nodes in 𝐻𝑖𝑛𝑑𝑒𝑥
and a maximum leaf node allowance per shard denoted as 𝑠ℎ𝑠𝑖𝑧𝑒, Eq. (5)
defines the shard quantity 𝑆𝑛. Besides, 𝜏𝑠ℎ𝑖𝑑 denotes the 𝑠ℎ𝑖𝑑-th Merkle
tree shard as shown in Fig. 6.

𝑆𝑛 = ⌈

𝑛
𝑠ℎ𝑠𝑖𝑧𝑒

⌉ (5)

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.
Fig. 6. Sharded Merkle HNSW node tree.

Example 4 (Conversion of Unsharded Tree to Sharded Tree with Optimiza-
tion Techniques). Fig. 2 depicts an unsharded tree with 8 leaf nodes.
𝑁5’s information includes id 5, its vector, and neighbor relations (𝑁3,
𝑁4, and 𝑁6 links in Fig. 5). The leaf digest ℎ𝑁5

is the hash of 𝑁5’s
information. Fig. 6 illustrates a sharded tree with 𝑠ℎ𝑠𝑖𝑧𝑒 = 4, partitioning
8 leaf nodes into 2 subtrees, each containing 4 nodes. 𝜏2 is the second
Merkle tree shard with root 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛2 . As more nodes are added to the
ADS, new shards, like 𝜏𝑠ℎ𝑖𝑑 (comprising 4 nodes with root 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛𝑠ℎ𝑖𝑑),
must be constructed.

4.3. VO Generation and Results Verification

𝑆𝑃 generates VO, and users verify VO in the outsourced query
system. We detail each algorithm in this section.
Algorithm 2: VO Generation (by 𝑆𝑃).

Input: 𝑞, 𝐻𝑖𝑛𝑑𝑒𝑥, 𝐾, 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ,
Merkle HNSW node tree shard 𝜏𝑠ℎ𝑖𝑑

Output: 𝑉 𝑂𝑠𝑝
1 𝑊 ← ∅ // currently found nearest elements to 𝑞
2 𝐿 ← get level of 𝐻𝑖𝑛𝑑𝑒𝑥.𝑒𝑝
3 for 𝑙𝑐 ← 𝐿...0 do
4 𝑊 , 𝐼𝑞 ← Search-Layer(𝑞,𝐻𝑖𝑛𝑑𝑒𝑥.𝑒𝑝, 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ, 𝑙𝑐)
5 𝑅 ← 𝐾 nearest elements from 𝑊 to 𝑞
6 𝐼𝑑𝑠ℎ𝑖𝑑= GetNodeID(𝑠ℎ𝑖𝑑, 𝐼𝑞) ⊳ Step 1
7 𝑉 𝑂𝑠𝑝 = MHT-VO-Generate(𝜏𝑠ℎ𝑖𝑑 , 𝐼𝑑𝑠ℎ𝑖𝑑) ⊳ Step 2

VO generation of SP. Algorithm 2 summarizes the process of VO
generation. Firstly, upon receiving user query 𝑞, 𝑆𝑃 follows the search
algorithm to traverse 𝐻𝑖𝑛𝑑𝑒𝑥, obtaining {𝑅, 𝐼𝑞} as query results. Sec-
ondly, 𝑆𝑃 generates 𝑉 𝑂𝑠𝑝 for 𝐼𝑞 based on the Merkle HNSW node tree
ADS.
(1) K-ANNS stage (lines 1–5). Algorithm 2 requires the following inputs:
query element 𝑞, 𝐻𝑖𝑛𝑑𝑒𝑥, number of nearest neighbors to return 𝐾,
and the dynamic candidate list size 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ. The search procedure
initiates at the top layer 𝐿 and proceeds to the bottom layer (line 3).
The 𝑆𝑒𝑎𝑟𝑐ℎ − 𝐿𝑎𝑦𝑒𝑟 function incorporates the element nearest to 𝑞 at
the current level 𝑙𝑐 into 𝑊 and visited index nodes into 𝐼𝑞 (line 4).
Finally, we add the top-k neighbors into 𝑅 (line 5).
(2) VO generation stage (lines 6–7). The nodes within 𝐼𝑞 are distributed
across multiple Merkle tree shards (𝜏1, 𝜏2,…, 𝜏𝑠ℎ𝑖𝑑) in Fig. 6. Therefore,
to guarantee the integrity of 𝐼𝑞 , 𝑆𝑃 must generate a 𝑉 𝑂𝑠𝑝 for each
shard. In Algorithm 2, we demonstrate the generation of 𝑉 𝑂𝑠𝑝 within
a shard by using the 𝑠ℎ𝑖𝑑-th tree shard, 𝜏𝑠ℎ𝑖𝑑 , as an example. First, we
must obtains 𝐼𝑑𝑠ℎ𝑖𝑑 from 𝐼𝑞 via the 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝐼𝐷 function (line 6). 𝐼𝑑𝑠ℎ𝑖𝑑
denotes the visited nodes’ sequence number in the 𝑠ℎ𝑖𝑑-th shard, we
can calculate it via Eq. (6).

𝐼𝑞 =
⋃𝑠ℎ𝑖𝑑=𝑆𝑛

𝑠ℎ𝑖𝑑=1
{𝑁𝑖𝑑 |𝑖𝑑 ∈ 𝐼𝑑𝑠ℎ𝑖𝑑∧ (6)

(𝑠ℎ𝑖𝑑 − 1) × 𝑠ℎ𝑠𝑖𝑧𝑒 < 𝑖𝑑 ≤ 𝑠ℎ𝑖𝑑 × 𝑠ℎ𝑠𝑖𝑧𝑒}

In step 2, 𝑆𝑃 generates 𝑉 𝑂𝑠𝑝 via the 𝑀𝐻𝑇 − 𝑉 𝑂 − 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 function
(line 7). Given that the Merkle HNSW node is also an instance of the
211
MHT, 𝑆𝑃 can employ the VO generate function analogous to the one
described for MHT in Section 2.2 and [27].

Example 5 (Generating VO Using Algorithm 2 Based on ADS in Fig. 6).
Upon receiving user query 𝑞, 𝑆𝑃 applies the K-ANNS algorithm to the
HNSW index shown in Fig. 5. The 𝑆𝑒𝑎𝑟𝑐ℎ − 𝐿𝑎𝑦𝑒𝑟 function adds visited
nodes to 𝐼𝑞 , with 𝐼𝑞 = {𝑁3,
𝑁4, 𝑁5, 𝑁6} (line 4). 𝑆𝑃 then retrieves 𝑅 = {𝑁5} (line 5). In the next
stage, 𝑆𝑃 generates 𝑉 𝑂𝑠𝑝 for 𝐼𝑞 based on the sharded Merkle HNSW
node tree as shown in Fig. 6. After executing 𝐼𝑑2 = 𝐺𝑒𝑡𝑁𝑜𝑑𝑒𝐼𝐷 (2,
𝐼𝑞), we get 𝐼𝑑2 = {5, 6}, meaning the visited nodes’ sequence numbers
in the second shard are {5, 6} (line 6). Hence, we generate 𝑉 𝑂𝑠𝑝 =
{ℎ𝑁1,1

, ℎ𝑁5
, ℎ𝑁6

} based on the second MHT shard (𝜏2) (line 7).

Algorithm 3: VO Verification (by client user).
Input: 𝑉 𝑂𝑠𝑝 , 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛, 𝑅, 𝐼𝑞 , 𝑞
Output: True if result 𝑅 is valid, False otherwise.

1 Check(𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 == ConstructRoot(𝑉 𝑂𝑠𝑝, 𝐼𝑞)); ⊳ Step 1
2 Check(𝑅 == SearchGraph(𝐼𝑞 , 𝑞)); ⊳ Step 2

VO verification of users. The following illustrate how users verifies
query result 𝑅 using 𝑉 𝑂𝑠𝑝 and 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 via Algorithm 3 (Fig. 4 step ④).
If 𝑅 is correct the algorithm will output true.
Step 1: the user reconstructs a Merkle root with 𝑉 𝑂𝑠𝑝 and 𝐼𝑞 , checking
its consistency with 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛.
Step 2: the client user locally executes the search algorithm described
in the K-ANNS stage to retrieve query results 𝑅′ based on 𝐼𝑞 . Instead
of obtaining the entire 𝐻𝑖𝑛𝑑𝑒𝑥 from 𝑆𝑃 , the user can retrieve only the
portion of the index structure required for user query’s search process.
As step 1 ensures the integrity of 𝐼𝑞 , 𝑅′ obtained via the SearchGraph
function can verify that 𝑆𝑃 has delivered the correct query result if
𝑅 = 𝑅′.

4.4. Merkle vector identifier tree

Problem. In Example 1 of Section 1, Bob seeks accounts exhibiting
behavior similar to the one with account ID 𝑘𝑖. Elements in the dataset
are denoted as ⟨𝑘𝑖, 𝑣𝑖⟩, with 𝑘𝑖 representing the account ID and 𝑣𝑖
the behavior vector. Bob uses 𝑘𝑖, not the vector itself, to request an
outsourced query. If 𝑆𝑃 deceives Bob by providing a 𝑣𝑖 that does not
match 𝑘𝑖, Bob obtains incorrect query results. Consequently, we present
the second ADS, the Merkle vector identifier tree, designed to safeguard
the integrity of identifier-vector (𝑘𝑖, 𝑣𝑖) relationships.
(1) ADS data structure. 𝑆𝑃 builds the ADS based on dataset 𝐷 =
{𝑜1, 𝑜2,… , 𝑜𝑛}, where 𝑜𝑖 = ⟨𝑘𝑖, 𝑣𝑖⟩. In Eq. (7), a leaf node digest of ADS
is a 𝑜𝑖’s hash, consisting of the identifier’s hash ℎ𝑘𝑖 and vector value’s
hash ℎ𝑣𝑖 . The internal node is stated in Definition 2.

ℎ𝑁𝑙𝑒𝑎𝑓
= ℎ𝑜𝑖 = ℎ(ℎ𝑘𝑖 |ℎ𝑣𝑖) (7)

(2) VO generation and verification. Given that the Merkle vector identi-
fier tree is also an instance of the MHT, 𝑆𝑃 can employ the VO gen-
erate function analogous to the one described for MHT in Section 2.2
and [27]. Similarly, the client user’s query verification technique cor-
responds to the approach described in Example 2.

4.5. Complexity analysis of the sharding optimization

The Merkle sharding tree technique enhances the efficiency of both
ADSs defined in Sections 4.2 and 4.4. It partitions the MHT-based
ADS into multiple shards, reducing tree size and VO construction cost.
Subsequently, we formally analyze the complexity optimization derived
from the sharding technique.
(1) Merkle sharding tree construction cost. Given the leaf node size 𝑛, a
fully-structured Merkle sharding tree consists of ⌈

𝑛
𝑠ℎ𝑠𝑖𝑧𝑒

⌉ shards, each
containing 𝑠ℎ leaf nodes. Let 𝐹 represent the Merkle sharding tree’s
𝑠𝑖𝑧𝑒

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.
fanout, 𝑟 denotes the leaf node input, 𝑑𝑚𝑒𝑟𝑘𝑙𝑒 indicates the tree’s height,
and ℎ symbolizes a hash value. Merkle sharding tree’s construction
cost is contingent upon the hash function computations and the total
I/O operations. First, constructing the leaf level necessitates 𝑠ℎ𝑠𝑖𝑧𝑒 hash
computations with an input length of |𝑟|. 𝐶𝐻

|𝑟|
represents the cost of

hashing a length input |𝑟| and 𝐶𝐼𝑂
|ℎ|

denotes the cost of storing ℎ.
Furthermore, a hash with an input length of 𝐹 ⋅|ℎ| is calculated for each
internal node. 𝐶𝐻𝐹 ⋅|ℎ|

represents the cost of hashing the length input
𝐹 ⋅ |ℎ|. Considering the tree height 𝑑𝑚𝑒𝑟𝑘𝑙𝑒 = log𝐹 𝑠ℎ𝑠𝑖𝑧𝑒, we can compute
the average number of internal nodes via 𝑁𝐼 = 𝐹 𝑑𝑚𝑒𝑟𝑘𝑙𝑒−1

𝐹−1 . Therefore,
Eq. (8) defines the cost of constructing the Merkle sharding tree.

𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡
𝑚𝑒𝑟𝑘𝑙𝑒 = ⌈

𝑛
𝑠ℎ𝑠𝑖𝑧𝑒

⌉(𝑠ℎ𝑠𝑖𝑧𝑒 ⋅ (𝐶𝐻
|𝑟|

+ 𝐶𝐼𝑂
|ℎ|
) (8)

+𝑁𝐼 ⋅ (𝐶𝐻𝐹 ⋅|ℎ|
+ 𝐶𝐼𝑂

|ℎ|
))

(2) VO construction cost. Eq. (9) denotes the VO construction cost of
processing a query that contains a single leaf node. In Eq. (9), 𝑑𝑚𝑒𝑟𝑘𝑙𝑒
equals the number of boundary nodes contained in 𝑉 𝑂𝑠𝑝.

𝐶𝑣𝑜
𝑚𝑒𝑟𝑘𝑙𝑒 = 𝐶𝐼𝑂

|𝑟|
+ 𝑑𝑚𝑒𝑟𝑘𝑙𝑒 ⋅ 𝐶𝐼𝑂

|ℎ|
(9)

(3) VO verification cost. Eq. (10) denotes a client user’s 𝑉 𝑂𝑠𝑝 verification
cost of a query that contains a single leaf node.

𝐶𝑣𝑜
𝑣𝑒𝑟𝑖𝑓𝑦 = 𝑑𝑚𝑒𝑟𝑘𝑙𝑒 ⋅ 𝐶𝐻𝐹 ⋅|ℎ|

+ 𝐶𝐻
|𝑟|

+ 𝐶𝑣𝑜
𝑚𝑒𝑟𝑘𝑙𝑒 (10)

Analyses. Upon observation of Eqs. (9) and (10), it becomes evident
that 𝑑𝑚𝑒𝑟𝑘𝑙𝑒 is a critical parameter impacting both the construction
and verification costs of 𝑉 𝑂𝑠𝑝. For a sharded Merkle tree, 𝑑𝑚𝑒𝑟𝑘𝑙𝑒 =
log𝐹 𝑠ℎ𝑠𝑖𝑧𝑒, whereas for a non-sharded Merkle tree, 𝑑′𝑚𝑒𝑟𝑘𝑙𝑒 = log𝐹 𝑛.
𝑑′𝑚𝑒𝑟𝑘𝑙𝑒 > 𝑑𝑚𝑒𝑟𝑘𝑙𝑒, thus leading to the conclusion that the sharding
technique enhances the efficiency of ADS.

5. Implementation of ANNProof on blockchain

This section initially presents an efficient contract execution scheme,
followed by a detailed exposition of the steps involved in the ADS
construction protocol. Subsequently, we extend this protocol to the ADS
update protocol, which substantially enhances ANNProof efficiency.

5.1. The contract execution scheme

We develop ANNProof on the blockchain, primarily by recording
the ADS hash on the blockchain via smart contracts, thereby addressing
C2. Concurrently, two efficiency-related design challenges arise when
implementing a trustworthy execution scheme for smart contracts.

• Efficiency of Execution (Q1): Does it necessitate the execution of
the ADS construction smart contract by all nodes to ensure ADS
uniqueness? In public blockchains, all nodes execute the same
ADS construction contract, with the majority of nodes validating
the correct contract execution outcome to guarantee ADS unique-
ness. However, this approach leads to redundant computations
and wastage of node resources.

• Trustworthiness of Execution (Q2): Should the complete ADS be
stored on the blockchain to prevent tampering? Unfortunately,
storing and processing vast amounts of data on the blockchain
incurs high costs and impairs the blockchain performance [29].

To address these challenges, we propose a contract state consistency
checking scheme based on an endorsement policy. We then describe the
scheme in detail, illustrating its capacity to enhance efficiency while
ensuring trustworthy execution.

Endorsement policy. The endorsement policy delineates the requisite
nodes or their quantity to vouch for a smart contract’s correct execu-
tion [40]. By defining which nodes should execute the ADS construction
contract to ensure ADS uniqueness, the endorsement policy prevents
212
Fig. 7. Workflow of invoking and executing the ADS construction contract.

unnecessary duplication of contract execution across all blockchain
nodes, thereby minimizing redundant computations among nodes and
solving Q1. A custom endorsement policy permits the smart contract
to designate endorsers as a subset of necessary nodes, employing mono-
tone logical expressions on sets, such as ‘‘two out of three’’ or (𝐴∧𝐵) ∨
𝐶.

Contract state consistency checking. In ANNProof, storing the com-
plete ADS on the blockchain is unnecessary. Instead, storing only ADS’s
Merkle root (𝑉 𝑂𝑐ℎ𝑎𝑖𝑛) on the blockchain ensures tamper evidence and
guarantees the integrity of the complete ADS. This approach eliminates
the wastage of blockchain storage and answers Q2. Regarding contract
state consistency checks, we solely checks the consistency of the con-
tract execution result, specifically the 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 state, after executing the
ADS construction contract (𝐶𝐴𝐷𝑆). As the ADS is an instance of the
MHT, ensuring the uniqueness of the ADS’s Merkle root guarantees that
different 𝑆𝑃 s maintain identical ADS locally, resulting in the same ADS
roots.

5.2. ADS construction protocol

The ADS construction protocol serves as the foundation for imple-
menting the ANNProof framework. We illustrate the contract execution
workflow in Fig. 7.

Step 1: Dataset Outsourcing. First, 𝐷𝑃 and multiple 𝑆𝑃 s negotiate
the query index’s construction algorithm and parameters. Given pre-
defined index construction algorithms and parameters, 𝑆𝑃 s can build
a determined index on the same dataset. Then, 𝐷𝑃 outsources 𝐷 to
multiple 𝑆𝑃 s. 𝑆𝑃 s build local query indexes using 𝐷 to answer user
K-ANNS queries efficiently.

Step 2: ADS Construction Smart Contract.
Preparations. Prior to contract execution, we need to make some
blockchain network preparations [40]. 𝐷𝑃 and multiple 𝑆𝑃 s negotiate,
employing certificates issued by the blockchain certificate authority
(CA) [41,42] to sign a smart contract endorsement policy, denoted as
𝑃𝑒𝑛𝑑𝑜𝑟𝑠𝑒. Both parties must confirm the ADS construction method and
parameters in 𝐶𝐴𝐷𝑆 . 𝐶𝐴𝐷𝑆 is then deployed on each 𝑆𝑃 , with 𝑃𝑒𝑛𝑑𝑜𝑟𝑠𝑒 =
‘‘two out of three’’.
① Contract invocation. First, 𝐷𝑃 invokes 𝐶𝐴𝐷𝑆 as shown in Fig. 7. As
stated by 𝑃𝑒𝑛𝑑𝑜𝑟𝑠𝑒, three 𝑆𝑃 s act as endorsers nodes, and 𝐷𝑃 signs and
sends multiple ADS construction transactions to these 𝑆𝑃 s.
② Contract execution endorsement. Upon receiving the transaction re-
quest, 𝑆𝑃 s (endorsers) construct ADS from the local query index via
𝐶𝐴𝐷𝑆 and subsequently return ADS’s Merkle root as the endorsement
to 𝐷𝑃 .
③ State consistency checking. Employing the contract state consistency
checking scheme, 𝐷𝑃 must gather the 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 endorsement from two
of the three 𝑆𝑃 s and verify the consistency of their values to ensure the

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

w
t
S
t
④

p
t
⑤

m
h .
S
b

o

n
d
i
n

S
A
t
d
c
C
w
s
n
C
s
M
b

S
s
w
𝑉

6

D
c
t
p

u
t
𝑄
c
f
C
C
C

T
s
f

P

C
i
i
𝐷
c
i
s
o
C
T
𝑄
c
s
C

validity of the transaction execution result. During this process, 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛
ill contain the signatures of 𝐷𝑃 and 𝑆𝑃 s. Finally, 𝐷𝑃 transmits the

ransaction and 𝑆𝑃 endorsements to the Orderer cluster.
tep 3: 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 Storage. Next, we describe the workflow of commit-
ing transactions to the blockchain.
Transactions ordering. Orderer clusters in Fig. 7 utilize consensus

rotocols, such as PBFT [43,44], BFT [45,46], and XFT [47], to batch
ransactions into blocks and distribute them to committer nodes.
Transactions committing. Committer nodes validates transaction legiti-
acy, including transaction signature integrity, endorsement policy ad-
erence, and read-write set version consistency with the blockchain [19]
ubsequently, valid transactions within the block are appended to the
lockchain, and 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 states are updated accordingly.

5.3. ADS update protocol

In scenarios where 𝐷𝑃 adds new vectors to the dataset, the ADS
construction protocol’s efficiency can be further enhanced. Therefore,
we extend the ADS construction protocol to the ADS update protocol
comprising three similar steps.
Motivation. Take the account transaction behavior dataset as an exam-
ple; 𝐷𝑃 needs to insert new account behavior vectors as the number
f accounts grows, necessitating 𝑆𝑃 to update the ADS. To enhance

the efficiency of updating ADS, 𝑆𝑃 is not obligated to reconstruct the
entire ADS when nodes are inserted to 𝐻𝑖𝑛𝑑𝑒𝑥. Instead, 𝑆𝑃 only needs
to reconstruct the corresponding ADS incorporating the updated nodes.

Step 1: Dataset Outsourcing. Assuming the original dataset contains
𝑛1 account vectors and the account number post-update is 𝑛2, 𝐷𝑃
eeds to transmit 𝑛2 vectors to 𝑆𝑃 s. As HNSW is an incremental index
ata structure defined in Section 4.1, reconstructing the entire index
s unnecessary. Instead, the original index is updated with new index
odes.

tep 2: ADS Construction Smart Contract. 𝑆𝑃 constructs the updated
DS using the updated 𝐻𝑖𝑛𝑑𝑒𝑥 via 𝐶𝐴𝐷𝑆 . Taking the Merkle HNSW node

ree as an illustration, this ADS incorporates the sharding optimization,
istributing index nodes in different Merkle shards. Thus, there are two
ases: (i) 𝑆𝑃 updates the original ADS, and (ii) 𝑆𝑃 creates new ADS.
ase 1: Some pre-existing index nodes’ neighborhoods may change
hen incorporating new nodes into 𝐻𝑖𝑛𝑑𝑒𝑥. Therefore, 𝑆𝑃 only recon-

tructs the ADS for the corresponding Merkle tree shards housing these
odes.
ase 2: Since new nodes have been added to 𝐻𝑖𝑛𝑑𝑒𝑥, 𝑆𝑃 solely con-
tructs new Merkle shards to accommodate these nodes. Regarding the
erkle vector identifier tree, 𝑆𝑃 only constructs new Merkle shards

ased on these newly added vector nodes.

tep 3: 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 Storage. If 𝑆𝑃 updates the original ADS, the corre-
ponding 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 field (ADS’s Merkle root) recorded on the blockchain
ill be updated. If 𝑆𝑃 creates new ADS, the corresponding new
𝑂𝑐ℎ𝑎𝑖𝑛2 , 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛3 ,…𝑉 𝑂𝑐ℎ𝑎𝑖𝑛𝑛 will be recorded on the blockchain.

. Security analysis

efinition 3. We define the query results of ANNProof as fresh,
omplete, and sound when an adversary SP, limited to polynomial-
ime computational power, delivers results that users have a negligible
robability of successfully validating.

An adversary 𝑆𝑃 , denoted as 𝑆𝑃 𝑎𝑑𝑣, aims to forge 𝑉 𝑂𝑠𝑝 to pass the
ser’s validation of the query result. First, 𝑆𝑃 𝑎𝑑𝑣 constructs ADS and
he corresponding 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛 via 𝐶𝐴𝐷𝑆 . Second, 𝑆𝑃 𝑎𝑑𝑣 receives a query
, generating the result 𝑅 = {𝑜1, 𝑜2,… , 𝑜𝐾}, and 𝑉 𝑂𝑠𝑝. The attack is

onsidered successful if 𝑉 𝑂𝑠𝑝 passes result verification and any of the
ollowing conditions is true.
ondition 1 Stale: (𝑜∗ ∈ 𝑅) ∧ (𝑜∗ ∈ 𝐷0) ∧ (𝑜∗ ∉ 𝐷1).
ondition 2 Incomplete: (𝑜∗ ∉ 𝑅) ∧ (𝑜∗ ∈ 𝑅′ ∧ 𝑅′ = 𝑄(𝐷1)).
ondition 3 Incorrect: (𝑜 ∈ 𝑅) ∧ (𝑜 ∉ 𝑅′ ∧ 𝑅′ = 𝑄(𝐷)).
213

∗ ∗ 1
heorem 1. The verifiable query algorithms of ANNProof satisfy the
ecurity property of Definition 3, contingent upon the underlying hash
unction demonstrating collision resistance.

roof. We prove this theorem by contradiction.

ase 1: Stale or incorrect results assume 𝑜∗ exists within 𝑅. Stale results
mply that 𝑜∗ derives from the previous dataset version 𝐷0, while
ncorrect results indicate its absence from the latest dataset version
1. The client user reconstructs the Merkle root of MHT-based ADS,

ontaining 𝑜∗, and checks consistency with 𝑉 𝑂𝑐ℎ𝑎𝑖𝑛. A tampered result
mplies two different Merkle trees with the same hash root, indicating a
uccessful collision of the underlying hash function, which contradicts
ur assumption.
ase 2: Incomplete results assume a valid answer is missing from 𝑅.
he client obtains 𝑅′ by executing the search algorithm using 𝐼𝑞 for
’s search process. Completeness is confirmed if 𝑅 = 𝑅′. Integrity

orruption in the partial index 𝐼𝑞 leads to hash collisions in some
harding trees of the MHT-based ADS, contradicting the assumption.
ase 3: Incorrect results assume 𝑅 contains an object 𝑜∗ not satisfying

query 𝑄. Completeness proof demonstrates the impossibility of such a
case, as the user verifies 𝑄’s valid answer 𝑅′. 𝑅 is considered complete
and sound only if 𝑅′ = 𝑅, i.e., 𝑜∗ satisfying 𝑄.

7. Evaluation

In this section, we provide a set of comprehensive experiments. The
experimental results show that ANNProof reduces VO generation time,
VO verification time, and VO size by 160, 120, and 28 ×, respectively,
compared to the state-of-the-art methods. Although ANNProof incurs
increased building overhead in the ADS construction protocol com-
pared to the Baseline, it achieves higher recall, thereby enabling more
precise user queries. By using the Merkle HNSW node tree in the ADS
update protocol, ANNProof achieves two times faster than Baseline in
ADS updating.

7.1. Experimental setup

Cluster setup. We build a permissioned blockchain network utilizing
Hyperledger Fabric v2.2 [48] as the foundational block-chain technol-
ogy deployed on a cluster with 7 nodes. The cluster is interconnected
through a 1 Gbps network. Each node has identical specifications,
including a 3.00 GHz Intel Xeon E3 v6 CPU with 32 cores, 32 GB RAM,
a 2 TB hard drive, and the Ubuntu 20.04.4 Trusty operating system.
Implementation. We write the smart contract in the Go language. We
employ an endorsement policy adhering to a ‘‘three out of four’’ re-
quirement, signifying that consistent endorsement must be provided
by at least three out of the four SPs. We developed a variant of the
nmslib library [49], referred to as v-nmslib [18], which 𝑆𝑃 employs
to construct indexes and ADS on individual nodes. The query user
operates on a singular node. We implement the query processing and
the result verification programs in C++. We also use the Keccak-
256 [50] cryptographic hash function for VO generation. We conduct
verifiable top-10 ANNS queries on 1000 randomly selected vectors
and calculate the average results to obtain the experimental data. In
summary, ANNProof consists of 1200 lines Go code and 3000 lines C++
code, which is publicly accessible [18].

Datasets. Our experiments were conducted on 3 widely used datasets.
The scale-invariant feature transform (SIFT) is a local feature descrip-
tor utilized in computer vision for numerous tasks, such as image
retrieval [51], comprising one million 128-dimensional vectors. The
65-dimensional Last.fm dataset is derived from the Last.fm music rec-
ommendation system [52], containing 292,385 vectors. GloVe-25 (50,
100, 200) dataset is a widely used pre-trained word embedding dataset

containing 1,183,514 vectors [53]. GloVe-25 (50, 100, 200) indicates

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

t
t
G

M
r
l
(
m

7

B
t
a
v
p
c
a
D
n
e

ℎ

D
d
p
o

ℎ

7

P
8
𝑎
W

Fig. 8. An example of Merkle VP-tree.

hat the vector dimensions in the dataset are 25 (50, 100, 200). We use
he euclidean distance for SITT and the angular distance for Last.fm and
loVe.

etrics. We evaluate ANNProof performance with the following met-
ics: (i) VO construction time, measured in terms of ANNProof server
atency, (ii) VO and result verification time in terms of user latency,
iii) size of the VO, and (iv) overhead of the ADS construction protocol,
easured in terms of ANNProof server latency and storage.

.2. Compared verifiable query schemes

We evaluate four verifiable query schemes in experiments:

• ImageProof: This scheme facilitates verifiable SIFT-based similar
image retrieval by implementing the Merkle randomized k-d tree
and the Merkle inverted index with cuckoo filters as ADS [5].

• Baseline: This scheme employs the Merkle VP-tree as ADS to
achieve verifiable K-ANNS queries. Due to the dense and highly
correlated structure of the Merkle VP-tree, it is challenging to par-
tition it into independent small segments for ADS optimization,
making it unsuitable for sharding optimization methods [54].

• ANNProof-U: represents the performance of ANNProof using un-
sharded ADS.

• ANNProof: This scheme employs the Merkle HNSW node tree
as ADS and incorporates the sharding techniques outlined in
Definition 2 for optimization purposes.

aseline implementation. We describe the ADS used in the Baseline:
he Merkle VP-tree. Fig. 8 illustrates this tree, integrating both MHT
nd VP-tree structures. In a VP-tree, the leaf node contains a bucket of
ector elements 𝑉𝑙𝑒𝑎𝑓 , whereas the internal node contains the vantage
oint 𝑣𝑝, the median distance value 𝜇, and pointers to the left (right)
hild [54]. Thus, 𝑆𝑃 can build Merkle VP-tree in a bottom-to-top
pproach.
igest of leaf node. Eq. (11) defines the digest of a Merkle VP-tree leaf
ode, where 𝑏𝑠 represents the bucket size, i.e., the number of vector
lements in a leaf node.

𝑁𝑙𝑒𝑎𝑓
= ℎ(𝑣1|𝑣2|...|𝑣𝑏𝑠) (11)

igest of internal node. The digest of a Merkle VP-tree internal node 𝑁𝑖 is
efined in Eq. (12). ℎ𝑣𝑝 represents the hash digest of the node’s vantage
oint, and ℎ𝜇 is the median distance value digest. ℎ𝑁 𝑙

𝑖
(ℎ𝑁𝑟

𝑖
) is the digest

f 𝑁𝑖’s left (right) child.

𝑁𝑖
= ℎ(ℎ𝑣𝑝|ℎ𝜇|ℎ𝑁 𝑙

𝑖
|ℎ𝑁𝑟

𝑖
) (12)

.3. Verifiable query performance of different schemes

arameter settings. Regarding the HNSW parameters, we set: 𝑀 =
, 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 100, 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ = 50. For the VP-tree, we set:
𝑙𝑝ℎ𝑎𝐿𝑒𝑓𝑡 = 4.1, 𝑎𝑙𝑝ℎ𝑎𝑅𝑖𝑔ℎ𝑡 = 2.3. We set 𝑠ℎ𝑠𝑖𝑧𝑒 = 10,000 for sharding.
214

e conduct experiments on the Sift-128 dataset, varying its size from
Fig. 9. VO construction time of SP.

Fig. 10. VO verification time of users.

Fig. 11. VO size.

Fig. 12. VO construction time of SP with varying 𝑀 .

Fig. 13. VO and result verification time of users with varying 𝑀 .

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

(
a
s
B

V
7
p
𝐼
s
d
l
r
r

7

r
S
6
m

I
b
s
F
F
i
1
t
c
g
o

I
d
8
a
V
i
i

I
𝑒
i

Fig. 14. VO size (bar chart) and query recall (line chart) with varying 𝑀 .

Fig. 15. VO construction time of SP with varying 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛.

Fig. 16. VO and result verification time of users with varying 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛.

Fig. 17. VO size (bar chart) and query recall (line) with varying 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛.

0.1 ∼ 1 million. The recall for the dataset in the indexes consistently
surpasses 95%.

VO construction time. Fig. 9 shows that ANNProof is 165 and 161
× faster than ImageProof and ANNProof-U, respectively. This is be-
cause ANNProof, leveraging sharding optimization, retains competitive
performance by limiting ADS tree size to fixed complexity, dependent
solely on 𝑠ℎ𝑠𝑖𝑧𝑒. ImageProof uses the Merkle k-d tree and Merkle in-
verted index as ADS, along with the absence of the sharding technique
in both ImageProof and ANNProof-U. As the dataset size and 𝐼𝑞 size
increases linearly, the complexity of 𝐼𝑞 ’s VO generation grows expo-
nentially, causing a significant elongation in VO generation time. In
Fig. 9, ANNProof is 2 × slower than Baseline. Because, Baseline adopts
the Merkle VP-tree as ADS, which possesses a significantly smaller tree
size, thus achieving the fastest speed. Considering 𝑆𝑃 s have abundant
215

d

Fig. 18. VO construction time of SP with varying 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ.

computational resources compared to users, the slightly longer VO
generation time in 𝑆𝑃 s is acceptable.

Result verification time. While Fig. 10 shows that ANNProof is 1.1
× slower than ANNProof-U, it surpasses ANNProof-U by 161 × in
the VO generation speed, according to Fig. 9. Furthermore, ANNProof
maintains competitive performance in result verification, outpacing Im-
ageProof and Baseline by 152 and 15 ×, respectively. Result verification
time comprises two components: (i) 𝐼𝑞 integrity verification time and
ii) local K-ANNS result search time. The latter is the dominant factor,
nd using the highly efficient HNSW search algorithm in the ANNProof
ignificantly reduces the local search time compared to ImageProof and
aseline.

O size. Fig. 11 shows that the VO size in ANNProof is only 3% to
% of that in the Baseline and ImageProof. VO comprises two com-
onents: (i) 𝑉 𝑂𝑠𝑝, which contains cryptographic proofs for validating
𝑞 integrity, and (ii) 𝐼𝑞 , where the latter occupies most of the VO
ize. Utilizing the HNSW search algorithm in ANNProof only requires
elivering a minimal amount of data to users for the execution of a
ocal search. Baseline exhibits the most considerable VO size due to its
equirement to return substantial vectors in 𝐼𝑞 . ImageProof necessitates
eturning users slightly fewer vectors than Baseline.

.4. Verifiable query performance of ANNProof

We conduct experiments to investigate the impact of different pa-
ameters and datasets on the verifiable query efficiency in ANNProof.
pecifically, we evaluate the performance using the Glove-25, Lastfm-
4, Sift-128, and Glove-200 datasets, with a fixed dataset size of 0.2
illion.

mpact of. 𝑀 The parameter 𝑀 denotes the number of connections
etween the nodes in 𝐻𝑖𝑛𝑑𝑒𝑥. Regarding the HNSW parameters, we
et: 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 100, 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ = 50, we vary 𝑀 from 2 ∼ 10.
igs. 12 ∼ 14 illustrates the performance implications of varying 𝑀 .
ig. 14 demonstrates that as 𝑀 rises, there is a corresponding increase
n query recall, resulting in higher query precision. However, Figs. 12,
3, and 14 show the increase in VO construction time, user verification
ime, and VO size with the elevation of 𝑀 . With an increase in 𝑀 , the
onnectivity of graph nodes in 𝐻𝑖𝑛𝑑𝑒𝑥 also increases, resulting in the
rowth of the 𝐼𝑞 size. Consequently, this leads to additional verification
verheads for the same user query.

mpact of efConstruction. The 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 parameter denotes the
ynamic candidate list size when constructing 𝐻𝑖𝑛𝑑𝑒𝑥. We set: 𝑀 =
, 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ = 50, we vary 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 from 50 ∼ 200. Figs. 15
nd 17 demonstrates the minimal impact of 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 on recall,
O size, and VO generation time in 𝑆𝑃 . Fig. 16 illustrates an increase

n user verification time for VO as 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 rises and further
ncreases as the dataset dimensionality grows.

mpact of efSearch. We set: 𝑀 = 8, 𝑒𝑓𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 100, we vary
𝑓𝑆𝑒𝑎𝑟𝑐ℎ = 50 from 25 ∼ 100. Figs. 18 ∽ 20 shows the performance
mplications of varying 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ, which denotes the dynamic candi-

ate list size when searching 𝐻𝑖𝑛𝑑𝑒𝑥. With an increase in 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ,

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

t
s
v
i
c
t

I
B

Fig. 19. VO and result verification time of users with varying 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ.

Fig. 20. VO size (bar chart) and query recall (line chart) with varying 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ.

𝑆𝑃 needs to search for more node neighbors in 𝐻𝑖𝑛𝑑𝑒𝑥, given the same
user query. Therefore 𝐼𝑞 size grows, leading to additional verification
overheads and higher recall. Figs. 18, 19, and 20 illustrate the increase
in VO construction time, user verification time, and VO size with the
elevation of 𝑒𝑓𝑆𝑒𝑎𝑟𝑐ℎ.

7.5. ADS construction protocol performance evaluation

ImageProof performs the worst across all metrics, showing an ex-
ponential performance gap compared to other schemes according to
results in Section 7.3. The overheads of ANNProof-U and ANNProof
on the ADS construction protocol are similar. Therefore, we compare
Baseline and ANNProof in executing the protocol, highlighting why
ANNProof is a superior solution for verifiable queries.

Parameter settings. The index parameters are the same as that in
Section 7.3. We conduct experiments on the Sift-128 dataset, varying
its size from 0.2 ∼ 1 million.

SP computation overhead. The time required for 𝑆𝑃 to execute the
ADS construction protocol comprises (i) index building time and (ii)
the time to construct the ADS based on the index. Fig. 21 shows that
ANNProof is 2 × slower than Baseline in building index. Nevertheless,
in Fig. 22, ANNProof’s time percentage of ADS construction compared
to index time is at most 2%, resulting in a low overhead for implement-
ing the verifiable query scheme. Fig. 22 presents the ADS building time
and its proportion relative to the index building time. A mere 1.6% of
the indexing time is consumed by the ADS construction in ANNProof,
attributable to the extensive HNSW indexing time.

SP storage overhead. Fig. 23 demonstrates that ANNProof’s index size
is twice as large as Baseline’s. However, ANNProof achieves a smaller
ADS size by employing a sharding optimization that is impossible with
Baseline.

Conclusion. Although ANNProof’s ADS construction protocol over-
head is slightly elevated, it remains acceptable due to 𝑆𝑃 s’ abundant
216

computational resources compared to users. m
Fig. 21. Index building time.

Fig. 22. ADS build time (bar) and its percentage of total index time (line).

Fig. 23. Index size and ADS size.

Fig. 24. Execution time of ADS update protocol with varying dataset size.

7.6. ADS update protocol performance evaluation

Protocol execution time. Fig. 24 shows that ANNProof is 2.5 × faster
han Baseline in executing ADS update protocol. When the dataset
ize before the update is 510,000, the horizontal coordinate (x-axis)
alue of 0.51 corresponds to the protocol execution time when 𝐷𝑃
nserts 10,000 vectors into the dataset. The protocol execution time also
onsists of two components: (i) index update time and (ii) ADS update
ime.

ndex update time. Fig. 25 shows that ANNProof is 2 × faster than
aseline in updating index. This is achieved through ANNProof’s incre-
ental vector insertion into the original 𝐻 , obviating the necessity
𝑖𝑛𝑑𝑒𝑥

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

i

e

s
2
2

A

Fig. 25. Index update time (bar) and the percentage of ADS update time relative to
t (line).

Fig. 26. Updated node percentage in the index updating process with varying datasets.

Fig. 27. ADS update time (bar chart) and its percentage of ADS update protocol’s
xecution time (line chart).

Fig. 28. Significantly extended update time of unsharded ADS (line chart) compared
to sharded ADS (bar).

for the entire index reconstruction required by Baseline. When AN-
NProof updates 𝐻𝑖𝑛𝑑𝑒𝑥, it only updates a subset of nodes in 𝐻𝑖𝑛𝑑𝑒𝑥 as
hown in Fig. 26. For datasets such as Sift-128 and Glove-25 (50, 100,
00), the proportion of updated nodes in 𝐻𝑖𝑛𝑑𝑒𝑥 ranges from 10% to
7%.

DS update time. Fig. 27 shows that ANNProof is 2.2 × faster than
Baseline in updating ADS. This discrepancy arises because Baseline
must reconstruct the entire Merkle VP-tree to update ADS, while AN-
NProof employs the Merkle HNSW node tree with the sharding opti-
mization. ANNProof only updates a subset of index nodes, resulting
217
in the reconstruction of ADS only for the corresponding tree shards
housing these nodes. The ADS update time of ANNProof accounts for
at most 55% of ADS update protocol’s execution time.

Sharding optimization. The line graph in Fig. 28 illustrates the ADS
update time without sharding optimization. In this scenario, ANNProof
must rebuild the Merkle tree for ADS update whenever 𝐷𝑃 inserts
vectors into the dataset. The line graph aligns with the left 𝑦-axis,
displaying how the unsharded ADS update time escalates with the
growth of the original dataset. The Glove-200 dataset exhibits the
longest update time. We evaluate five different datasets. When the pre-
update dataset size is 510,000, an 𝑥-axis value of 0.51 indicates the
ADS update time for inserting 10,000 vectors by 𝐷𝑃 .

The bar chart shows ADS update time with sharding optimization
𝑠ℎ𝑠𝑖𝑧𝑒 = 10,000, where each shard holds up to 10,000 leaf nodes. Under
this setup, ADS updates in response to dataset size growth require only
the construction of a new shard tree, leaving existing shards unchanged.
Thus, the bar chart in Fig. 28 indicates that the update time is constant
regardless of dataset size and varies only by dataset type. Comparing
these two charts, we conclude that the sharding technique significantly
reduces the ADS update time by 99%.

8. Related work

This section provides an overview of existing outsourced systems
and conducts a comparative analysis between ANNProof and state-of-
the-art systems, highlighting the advantages of ANNProof.

8.1. Conventional outsourced query system (OQS)

Verifiable queries can be achieved through the use of authenticated
data structure (ADS). Prior studies, such as SVLSQ [55] and 𝑃𝐴2 [33],
employ cryptographic primitives to design ADS, enabling verifiable
query semantics, such as set operations and Skyline queries. MHT is
a widely employed cryptographic primitive in the design of ADS. For
instance, the Merkle-B tree (MB-tree) [27] provides a verifiable range
query method, while VN-Auth [31] combines MTH and VoR-Tree for
verifiable spatial nearest neighbor (NN) queries.

Verifiable query semantics supported by MHT include integrity
verification, efficient comparison, and proof of existence [34,56]. MHT-
based ADS exhibit low computational overhead due to the efficiency
of Merkle hash operations. Verifiable query semantics that employs
complex primitives and protocols, such as accumulators [16] and inter-
active proof protocols [55], experience higher computational overhead.
Unfortunately, 𝐷𝑃 ’s susceptibility to attacks may lead to outsourcing
tampered data to 𝑆𝑃 s, causing users to misperceive honest 𝑆𝑃 s as
malicious.

8.2. Public blockchain-based OQS

Blockchain. Ethereum is the pioneering public blockchain to incorpo-
rate smart contracts, allowing users to read and write data from the
blockchain [57]. Permissioned blockchain, e.g., Fabric [40], and FISCO
BCOS [58] achieve better performance and also meet the security
requirements in commercial scenarios [32,59,60].

Blockchain technology provides a promising solution for preventing
tampered data outsourcing from 𝐷𝑃 through its secure data storage
capabilities. For instance, 𝐺𝐸𝑀2 [29] uses smart contracts to form a
tamper-evident ADS and integrates a gas-efficient Merkle merge tree to
decrease ADS size. The SGX-based query framework [21] establishes a
protocol between trusted hardware and smart contracts for ADS con-
struction. iQuery [20] applies a game-theory-based smart contract to
confirm the query results’ correctness. Some approaches involve miners
in the construction of ADS within the blockchain. For example, in
vChain [16], miners construct accumulator-based ADS and incorporate
them into each block, while VQL [22] necessitates miners to verify
the data layer’s consistency, significantly consuming computational

resources.

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.

m
d
i
l
a
r

V
c
s
c
c
n
m
e

i
t
a
o

E
t
o
v

o
t
c
6
p
s
t
u
s
I
g

Table 2
Comparison of outsourced query systems (OQS)

Catalog Representative C1 C2

Query Verification Economic Tamper-evident
Semantic Overhead Cost Dataset

SVLSQ [55], SVLSQ: Skyline, 𝑃𝐴2: MB-tree,

Small
Conventional 𝑃𝐴2 [33], Set,MB-tree: Range, VN-Auth, ×
OQS MB-tree [27], VN-Auth:NN, ImageProof:

VN-Auth [31], ImageProof: Medium,
ImageProof [5] Topk images Others: High

Public 𝐺𝐸𝑀2 [29], vChain [16], iQuery: Arbitrary, vChain: High, iQuery: Twice
Blockchain VQL [22], iQuery [20], Others: Boolean range iQuery: Small, the expenses, ✓

Based OQS SGX-based query and time-window Others: 𝐺𝐸𝑀2:High
framework [21] Medium Others: Small

Permissioned
ANNProof

K-approximate
Medium Small ✓Blockchain nearest neighbor

Based OQS search
i
N
f

T
A
i

9

o
f
s
l
n
(
t
q
p
s

f
f

C

W
I
v
P

D

c
i

D

8.3. Comparison with state-of-the-art systems

Table 2 compares conventional OQS, public blockchain-based OQS,
and ANNProof. Among these state-of-the-art systems, ANNProof rep-
resents the first endeavor to construct a verifiable, outsourced K-ANN
search system on blockchain. To address C1, ANNProof incorporates
optimized designs in query semantics, verification overhead, and eco-
nomic cost.

Query Semantic. While ImageProof [5] is exclusively suited for similar
image retrieval, ANNProof broadens versatility with its K-ANNS se-

antics, accommodating diverse applications from service recommen-
ations to anti-money laundering [7–9]. Authenticated query semantics
n vChain, 𝐺𝐸𝑀2, VQL, and the SGX-based query framework are
imited to boolean range and time-window queries. iQuery supports
rbitrary query semantics. However, it necessitates two 𝑆𝑃 s to deliver
esults, increasing economic costs.

erification Overhead. Compared to ImageProof, ANNProof signifi-
antly diminishes the user verification overhead by using an efficient
earch index. Unlike 𝐺𝐸𝑀2, ANNProof stores the complete ADS off-
hain, retaining only the ADS root on the blockchain. By using ADS
onstruction smart contract and endorsement strategies, ANNProof sig-
ificantly reduces the information stored on the blockchain while
aintaining trustworthiness, striking a balance between security and

fficiency.
Compared to vChain, ANNProof employs MHT-based ADS, resulting

n lower computational overhead. Additionally, accumulator primi-
ives’ calculation overhead is 4 × greater than MHT [16]. Besides, VQL
nd the SGX-based query framework also exhibit lower ADS calculation
verheads due to the utilization of MHT.

conomic Cost. iQuery incurs twice the expenses in verification due
o the game-theory-based incentive mechanism. In contrast, ANNProof
nly requires users to pay for a single outsourced query, as users can
erify results with VO, resulting in reduced economic costs.
𝐺𝐸𝑀2 incurs substantial gas fees when storing the complete ADS

n the blockchain. Although the trustworthiness of the ADS construc-
ion process is ensured, storing information on the public blockchain is
ostly, leading to considerable overheads in outsourced query fees [61,
2]. Besides, within EVM, the gas fees for utilizing the Merkle hash
rimitive is much cheaper than the accumulator primitive [35]. Con-
equently, vChain modifies the block data structure and directs miners
o compute accumulators for ADS, eliminating gas fees required for
sing EVM. However, this design is inapplicable to public blockchain
ystems typically employing the EVM execution environment [59].
n contrast, ANNProof offers a verifiable query scheme applicable to
218

eneral permissioned blockchains without modifying the underlying
nfrastructure, enhancing its generality. This enhancement enables AN-
Proof to deliver a highly cost-effective authenticated K-ANNS query

ramework.

amper-evident Datasets. By leveraging blockchain smart contracts,
NNProof ensures 𝐷𝑃 provides incorruptible data, effectively address-

ng C2 compared to OQS approaches.

. Conclusion and future work

This paper presents the ANNProof framework, the first exploration
f verifiable K-ANNS on the blockchain. HNSW is the optimal solution
or verifiable outsourcing, which provides a smaller partial index size,
horter search time, and determined search paths, enabling efficient
ocal result search and query verification for users. We propose two
ovel ADSs to ensure the integrity of (i) the vector query algorithm and
ii) the vector-identifier relationship, optimizing ADS using sharding
echniques. Security analysis formally confirms that ANNProof ensures
uery results’ soundness, completeness, and freshness. Extensive ex-
eriments demonstrate its superior performance over state-of-the-art
ystems.

In the future, we will explore blockchain-based payment methods
or outsourced queries and aim to design a settlement approach that is
air, secure, and gas-efficient.

RediT authorship contribution statement

Lingling Lu: Conceptualization, Methodology, Software. Zhenyu
en: Writing – original draft, Writing – review & editing. Ye Yuan:

nvestigation, Supervision. Qinming He: Funding acquisition, Super-
ision. Jianhai Chen: Formal analysis, Validation. Zhenguang Liu:
roject administration.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability
Data will be made available on request.

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.
Acknowledgments

This paper is financially supported by the National Key R&D Pro-
gram of China (2021YFB2700500, 2021YFB2700501) and Key R&D
Program of Zhejiang Province (2022C01086). Zhenyu Wen is sup-
ported by the China Postdoctoral Science Foundation under Grant
2023M743403 and the Zhejiang Provincial Natural Science Foundation
of Major Program (Youth Original Project) under Grant LDQ24F020001.
Ye Yuan is supported by the National Key Research and Develop-
ment Program of China (Grant No. 2022YFB2702100) and the NSFC
(Grant Nos. 61932004, 62225203, U21A20516). We thank all of the
anonymous reviewers who spent their own time reviewing and giving
suggestions. We thank Hanning Ruan (Transwarp) for improving paper
writing, and Jianting He (BlockSec) for helping to build the blockchain
experiments.

References

[1] Google, Google cloud: Cloud computing services, 2023, https://cloud.google.
com/ (Accessed 26 June 2023).

[2] Amazon, Amazon web services (AWS), 2023, https://aws.amazon.com/ (Accessed
26 June 2023).

[3] Microsoft, Microsoft azure: Cloud computing services, 2023, https://azure.
microsoft.com/ (Accessed 26 June 2023).

[4] B. Naidan, L. Boytsov, E. Nyberg, Permutation search methods are efficient, yet
faster search is possible, in: Proceedings of the 41st International Conference on
Very Large Data Bases, VLDB, vol. 8, VLDB Endowment, 2015, pp. 1618–1629.

[5] S. Guo, J. Xu, C. Zhang, C. Xu, T. Xiang, ImageProof: Enabling authentication for
large-scale image retrieval, in: Proceedings of the 35th International Conference
on Data Engineering, ICDE, IEEE, 2019, pp. 1070–1081.

[6] H. Pang, K. Mouratidis, Authenticating the query results of text search engines,
in: Proceedings of the 34th International Conference on Very Large Data Bases,
VLDB, vol. 1, VLDB Endowment, 2008, pp. 126–137.

[7] M. Aumüller, E. Bernhardsson, A. Faithfull, ANN-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms, Inform. Syst. (IS) 87 (2020)
101374.

[8] Y. Xia, Y. Cao, S. Hu, T. Liu, L. Lu, Deep intention-aware network for click-
through rate prediction, in: Proceedings of the 31st International World Wide
Web Conferences, WWW, ACM, 2022.

[9] Y. Yuan, D. Ma, Z. Wen, Z. Zhang, G. Wang, Subgraph matching over graph
federation, in: Proceedings of the 47th International Conference on Very Large
Data Bases (VLDB 2019), vol. 15, (3) VLDB Endowment, 2021, pp. 437–450.

[10] S. Hu, Z. Zhang, B. Luo, S. Lu, B. He, L. Liu, BERT4eth: A pre-trained transformer
for ethereum fraud detection, in: Proceedings of the 32nd International World
Wide Web Conferences, WWW, 2023, pp. 2189–2197.

[11] Z. Huang, Y. Huang, P. Qian, J. Chen, Q. He, Demystifying bitcoin address
behavior via graph neural networks, in: Proceedings of the 39th International
Conference on Data Engineering, ICDE, 2023.

[12] Demyst, Demyst: The external data platform, 2023, https://demyst.com/
(Accessed: 26 June 2023).

[13] PeerIQ, Peeriq: Technology for the next wave of alternative lending, 2023,
https://www.peeriq.com/ (Accessed: 26 June 2023).

[14] K. Ren, Y. Guo, J. Li, X. Jia, C. Wang, Y. Zhou, S. Wang, N. Cao, F. Li, Hybridx:
New hybrid index for volume-hiding range queries in data outsourcing services,
in: Proceedings of the 40th International Conference on Distributed Computing
Systems, ICDCS, IEEE, 2020, pp. 23–33.

[15] M. Zhang, Z. Xie, C. Yue, Z. Zhong, Spitz: a verifiable database system,
Proceedings of the 46th International Conference on Very Large Data Bases
(VLDB), vol. 13 (2020) 3449–3460.

[16] C. Xu, C. Zhang, J. Xu, Vchain: Enabling verifiable boolean range queries over
blockchain databases, in: Proceedings of the 45th International Conference on
Management of Data, SIGMOD, 2019, pp. 141–158.

[17] S. Wu, L. Wu, Y. Zhou, R. Li, Z. Wang, X. Luo, C. Wang, K. Ren, Time-
travel investigation: Toward building a scalable attack detection framework on
ethereum, ACM Trans. Softw. Eng. Methodol. (TOSEM) 31 (3) (2022) 1–33.

[18] L. Lu, Verifiable non-metric space library (v-NMSLIB), 2023, https://github.com/
lulinglingcufe/vnmslib/ (Accessed: 26 May 2023).

[19] A. Sharma, F.M. Schuhknecht, D. Agrawal, J. Dittrich, Blurring the lines between
blockchains and database systems: the case of hyperledger fabric, in: Proceedings
of the 45th International Conference on Management of Data, SIGMOD, 2019,
pp. 105–122.

[20] L. Lu, Z. Wen, Y. Yuan, B. Dai, P. Qian, C. Lin, Q. He, Z. Liu, J. Chen, R.
Ranjan, Iquery: A trustworthy and scalable blockchain analytics platform, IEEE
Trans. Depend. Secure Comput. (TDSC) (2023).

[21] C. Cai, L. Xu, A. Zhou, C. Wang, Toward a secure, rich, and fair query service for
light clients on public blockchains, IEEE Trans. Depend. Secure Comput. (TDSC)
(2021).
219
[22] H. Wu, Z. Peng, S. Guo, Y. Yang, B. Xiao, VQL: efficient and verifiable cloud
query services for blockchain systems, IEEE Trans. Parallel Distrib. Syst. (TPDS)
33 (6) (2021) 1393–1406.

[23] Q. Zhang, Y. He, R. Lai, Z. Hou, G. Zhao, A survey on the efficiency, reliability,
and security of data query in blockchain systems, Future Gener. Comput. Syst.
145 (2023) 303–320.

[24] S. Zhang, J. He, W. Liang, K. Li, MMDS: A secure and verifiable multimedia data
search scheme for cloud-assisted edge computing, Future Gener. Comput. Syst.
(2023).

[25] Q. Wang, F. Zhou, J. Xu, Z. Xu, Efficient verifiable databases with additional
insertion and deletion operations in cloud computing, Future Gener. Comput.
Syst. 115 (2021) 553–567.

[26] Y. Liu, J. Yu, M. Yang, W. Hou, H. Wang, Towards fully verifiable forward
secure privacy preserving keyword search for IoT outsourced data, Future Gener.
Comput. Syst. 128 (2022) 178–191.

[27] F. Li, M. Hadjieleftheriou, G. Kollios, L. Reyzin, Dynamic authenticated index
structures for outsourced databases, in: Proceedings of the ACM International
Conference on Management of Data, SIGMOD, 2006, pp. 121–132.

[28] R.C. Merkle, A digital signature based on a conventional encryption function,
in: Proceedings of the 6th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, EUROCRYPT, Springer, 1987, pp.
369–378.

[29] C. Zhang, C. Xu, J. Xu, Y. Tang, B. Choi, Gemˆ2-tree: A gas-efficient structure
for authenticated range queries in blockchain, in: Proceedings of the 35th
International Conference on Data Engineering, ICDE, IEEE, 2019, pp. 842–853.

[30] M.L. Yiu, Y. Lin, K. Mouratidis, Efficient verification of shortest path search via
authenticated hints, in: Proceedings of the 26th International Conference on Data
Engineering, ICDE, IEEE, 2010, pp. 237–248.

[31] L. Hu, W.-S. Ku, S. Bakiras, C. Shahabi, Spatial query integrity with voronoi
neighbors, IEEE Trans. Knowl Data Eng. (TKDE) 25 (4) (2011) 863–876.

[32] U. Demirbaga, G.S. Aujla, MapChain: A blockchain-based verifiable healthcare
service management in IoT-based big data ecosystem, IEEE Trans. Netw. Serv.
Manage. (TNSM) (2022).

[33] C. Xu, Q. Chen, H. Hu, J. Xu, X. Hei, Authenticating aggregate queries over set-
valued data with confidentiality, IEEE Trans. Knowl. Data Eng. 30 (4) (2017)
630–644.

[34] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, C. Papamanthou, vSQL: Verifying
arbitrary SQL queries over dynamic outsourced databases, in: Proceedings of the
38th IEEE Symposium on Security and Privacy (S&P), IEEE, 2017, pp. 863–880.

[35] P. Qian, J. He, L. Lu, S. Wu, Z. Lu, L. Wu, Y. Zhou, Q. He, Demystifying random
number in ethereum smart contract: Taxonomy, vulnerability identification, and
attack detection, IEEE Trans. Softw. Eng. (TSE) (2023).

[36] Y.A. Malkov, D.A. Yashunin, Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs, IEEE Trans. Pattern Anal.
Mach. Intell. (TPAMI) 42 (4) (2018) 824–836.

[37] L. Boytsov, D. Novak, Y. Malkov, E. Nyberg, Off the beaten path: Let’s
replace term-based retrieval with k-nn search, in: Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management, CIKM,
2016, pp. 1099–1108.

[38] J.K. Uhlmann, Satisfying general proximity/similarity queries with metric trees,
Inform. Process. Lett. 40 (4) (1991) 175–179.

[39] P.N. Yianilos, Data structures and algorithms for nearest neighbor, in: Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms, vol. 66, 1993, p.
311.

[40] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al., Hyperledger fabric:
a distributed operating system for permissioned blockchains, in: Proceedings of
the 13th European Conference on Computer Systems Conference, EuroSys, ACM,
2018, pp. 1–15.

[41] P. Zhang, Y. Wang, G.S. Aujla, A. Jindal, Y.D. Al-Otaibi, A blockchain-based
authentication scheme and secure architecture for IoT-enabled maritime trans-
portation systems, IEEE Trans. Intell. Transport. Syst. (TITS) 24 (2) (2022)
2322–2331.

[42] A. Jindal, G.S. Aujla, N. Kumar, M. Villari, GUARDIAN: Blockchain-based secure
demand response management in smart grid system, IEEE Trans. Serv. Comput.
(TSC) 13 (4) (2019) 613–624.

[43] L. Lao, X. Dai, B. Xiao, S. Guo, G-PBFT: a location-based and scalable consensus
protocol for IOT-blockchain applications, in: Proceedings of the 34th Interna-
tional Parallel and Distributed Processing Symposium, IPDPS, IEEE, 2020, pp.
664–673.

[44] H. Dang, T.T.A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, B.C. Ooi, Towards
scaling blockchain systems via sharding, in: Proceedings of the 45th International
Conference on Management of Data, SIGMOD, 2019, pp. 123–140.

[45] J. Behl, T. Distler, R. Kapitza, Hybrids on steroids: SGX-based high performance
BFT, in: Proceedings of the 12th European Conference on Computer Systems,
EuroSys, ACM, 2017, pp. 222–237.

[46] A. Bessani, J. Sousa, M. Vukolić, A byzantine fault-tolerant ordering service for
the hyperledger fabric blockchain platform, in: Proceedings of the 1st Workshop
on Scalable and Resilient Infrastructures for Distributed Ledgers, SERIAL, 2017,
pp. 1–2.

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://aws.amazon.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://azure.microsoft.com/
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb4
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb4
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb4
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb4
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb4
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb5
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb6
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb7
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb7
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb7
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb7
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb7
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb8
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb8
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb8
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb8
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb8
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb9
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb9
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb9
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb9
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb9
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb10
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb10
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb10
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb10
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb10
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb11
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb11
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb11
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb11
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb11
https://demyst.com/
https://www.peeriq.com/
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb14
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb14
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb14
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb14
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb14
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb14
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb14
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb15
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb16
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb17
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb17
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb17
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb17
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb17
https://github.com/lulinglingcufe/vnmslib/
https://github.com/lulinglingcufe/vnmslib/
https://github.com/lulinglingcufe/vnmslib/
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb19
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb19
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb19
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb19
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb19
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb19
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb19
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb20
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb20
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb20
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb20
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb20
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb21
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb21
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb21
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb21
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb21
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb22
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb23
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb24
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb25
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb26
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb26
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb26
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb26
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb26
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb27
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb28
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb28
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb28
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb28
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb28
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb28
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb28
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb29
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb29
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb29
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb29
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb29
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb30
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb30
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb30
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb30
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb30
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb31
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb31
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb31
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb32
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb33
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb33
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb33
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb33
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb33
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb34
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb34
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb34
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb34
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb34
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb35
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb35
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb35
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb35
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb35
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb36
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb36
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb36
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb36
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb36
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb37
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb38
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb38
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb38
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb39
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb40
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb41
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb41
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb41
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb41
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb41
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb41
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb41
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb42
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb42
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb42
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb42
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb42
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb43
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb43
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb43
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb43
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb43
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb43
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb43
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb44
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb44
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb44
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb44
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb44
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb45
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb45
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb45
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb45
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb45
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb46
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb46

Future Generation Computer Systems 156 (2024) 206–220L. Lu et al.
[47] S. Liu, P. Viotti, C. Cachin, V. Quéma, M. Vukolic, XFT: Practical fault tolerance
beyond crashes, in: Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementations, OSDI, 2016, pp. 485–500.

[48] T.L.F. Project, Hyperledger fabric, 2023, https://github.com/hyperledger/fabric
(Accessed 26 May 2023).

[49] L. Boytsov, Non-metric space library (NMSLIB), 2023, https://github.com/
nmslib/nmslib/ (Accessed 26 May 2023).

[50] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, Keccak, in: Proceedings of
the 32nd European Cryptology Conference, EUROCRYPT, Springer, 2013, pp.
313–314.

[51] L. Amsaleg, Datasets for approximate nearest neighbor search, 2023, http://
corpus-texmex.irisa.fr/ (Accessed 26 June 2023).

[52] B. Frederickson, Approximate nearest neighbours for recommender sys-
tems, 2023, http://www.benfrederickson.com/approximate-nearest-neighbours-
for-recommender-systems/ (Accessed 26 June 2023).

[53] J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word represen-
tation, in: Proceedings of the 19th Conference on Empirical Methods in Natural
Language Processing, EMNLP, 2014, pp. 1532–1543.

[54] T.-c. Chiueh, Content-based image indexing, in: Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, VLDB, vol. 94, Citeseer, 1994, pp.
582–593.

[55] Z. Wang, X. Ding, H. Jin, P. Zhou, Efficient Secure and Verifiable Location-
Based Skyline Queries over Encrypted Data, 15, (9) VLDB Endowment, 2022,
pp. 1822–1834,

[56] R.S. Wahby, S. Setty, M. Howald, Z. Ren, A.J. Blumberg, M. Walfish, Efficient
RAM and control flow in verifiable outsourced computation, in: Proceedings of
the 22nd Network and Distributed System Security Symposium, NDSS, Internet
Society, 2015.

[57] G. Wood, et al., Ethereum: A secure decentralised generalised transaction ledger,
Ethereum project yellow paper 151 (2014) (2014) 1–32.

[58] F.B. Community, FISCO-BCOS, 2021, https://github.com/FISCO-BCOS (Accessed
20 July 2021).

[59] M. Li, Y. Wang, S. Ma, C. Liu, D. Huo, Y. Wang, Z. Xu, Auto-tuning with
reinforcement learning for permissioned blockchain systems, 16, (5) VLDB
Endowment, 2023, pp. 1000–1012,

[60] L. Yuan, Q. He, S. Tan, B. Li, J. Yu, F. Chen, Y. Yang, CoopEdge+: Enabling
decentralized, secure and cooperative multi-access edge computing based on
blockchain, IEEE Trans. Parallel Distrib. Syst. (TPDS) 34 (3) (2023) 894–908.

[61] Z. Sui, J.K. Liu, J. Yu, X. Qin, Monet: A fast payment channel network for
scriptless cryptocurrency monero, in: Proceedings of the 42nd International
Conference on Distributed Computing Systems, ICDCS, IEEE, 2022, pp. 280–290.

[62] R. Han, Z. Sui, J. Yu, J. Liu, S. Chen, Fact and fiction: Challenging the honest
majority assumption of permissionless blockchains, in: Proceedings of the ACM
Conference on Computer and Communications Security, CCS, ACM, 2021, pp.
817–831.

Lingling Lu is currently pursuing the Ph.D. degree with
the College of Computer Science and Technology, Zhejiang
University, Hangzhou, China. She engages in blockchain
security and optimization research work. Her research in-
terests include blockchain, database managements and big
data processing.
220
Zhenyu Wen (Member, IEEE) received the M.Sc. and Ph.D.
degrees in computer science from Newcastle University,
Newcastle Upon Tyne, U.K., in 2011 and 2016, respectively.
He is currently a Professor with the Institute of Cyberspace
Security and college of Information Engineering, Zhejiang
University of Technology, China. His current research in-
terests include IoT, crowd sources, AI system, and cloud
computing. For his contributions to the area of scalable
data management for the internet-of-things, he was awarded
the IEEE TCSC Award for Excellence in Scalable Computing
(Early Career Researchers) in 2020.

Ye Yuan received his BS, MS and Ph.D. degrees in Computer
Science from Northeastern University, China in 2004, 2007
and 2011, respectively. He is now a Professor at the
College of Information Science and Engineering at Beijing
Institute of Technology. His research interests include graph
databases, probabilistic databases, data privacy-preserving
and cloud computing.

Qinming He (Member, IEEE) received the BS, MS, and
Ph.D. degrees in computer science from Zhejiang Univer-
sity, Hangzhou, P. R. China, in 1985, 1988, and 2000,
respectively. He is currently a professor with the College
of Computer Science & Technology, Zhejiang University.
His research interests include data mining and blockchain
system security.

Jianhai Chen (Member, IEEE) received the MS and Ph.D.
degrees in computer science and technology from Zhejiang
University (ZJU), Hangzhou, China. He is currently an
associate professor of the College of Computer Science and
Technology, ZJU. His research interests include blockchain
system security, cloud computing scheduling algorithms and
game theory.

Zhenguang Liu is currently a professor of Zhejiang Univer-
sity. He had been a research fellow in National University
of Singapore, and A*STAR (Agency for Science, Technology
and Research, Singapore) for three years. He respectively
received his Ph.D. and B.E. degrees from Zhejiang University
and Shandong University, China, in 2010 and 2015. His re-
search interests include blockchain security and multimedia
data analysis.

http://refhub.elsevier.com/S0167-739X(24)00078-5/sb47
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb47
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb47
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb47
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb47
https://github.com/hyperledger/fabric
https://github.com/nmslib/nmslib/
https://github.com/nmslib/nmslib/
https://github.com/nmslib/nmslib/
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb50
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb50
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb50
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb50
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb50
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
http://www.benfrederickson.com/approximate-nearest-neighbours-for-recommender-systems/
http://www.benfrederickson.com/approximate-nearest-neighbours-for-recommender-systems/
http://www.benfrederickson.com/approximate-nearest-neighbours-for-recommender-systems/
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb53
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb53
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb53
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb53
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb53
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb54
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb54
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb54
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb54
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb54
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb55
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb55
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb55
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb55
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb55
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb56
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb56
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb56
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb56
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb56
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb56
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb56
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb57
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb57
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb57
https://github.com/FISCO-BCOS
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb59
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb59
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb59
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb59
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb59
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb60
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb60
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb60
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb60
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb60
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb61
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb61
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb61
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb61
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb61
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb62
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb62
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb62
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb62
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb62
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb62
http://refhub.elsevier.com/S0167-739X(24)00078-5/sb62

	ANNProof: Building a verifiable and efficient outsourced approximate nearest neighbor search system on blockchain
	Introduction
	Background and Preliminaries
	Blockchain and Smart Contract
	Preliminaries of Verifiable Outsourced Queries
	Verifiable Query in Blockchain

	ANNProof Design and Overview
	Query Semantics of ANNProof
	Key Technologies of ANNProof
	ANNProof Overview
	Motivation for Implementing ANNProof on Blockchain

	Verifying K-ANNS Query via Merkle HNSW Node Tree
	Query Index Construction
	ADS Construction: Merkle HNSW Node Tree
	VO Generation and Results Verification
	Merkle Vector Identifier Tree
	Complexity Analysis of the Sharding Optimization

	Implementation of ANNProof on Blockchain
	The Contract Execution Scheme
	ADS Construction Protocol
	ADS Update Protocol

	Security Analysis
	Evaluation
	Experimental Setup
	Compared Verifiable Query Schemes
	Verifiable Query Performance of Different Schemes
	Verifiable Query Performance of ANNProof
	ADS Construction Protocol Performance Evaluation
	ADS Update Protocol Performance Evaluation

	Related Work
	Conventional Outsourced Query System (OQS)
	Public Blockchain-Based OQS
	Comparison With State-of-the-Art Systems

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

